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Abstract

The thermal energy atomic scattering from solid surfaces is very useful tool in the energy range of 10–100 meV
because the usually applied He probe particles do not penetrate into the surface but provide information about the
top layer. We focused on the scattering from ideally periodic and disordered surfaces. The physical model contains
an appropriate 3D interaction potential and a 3D Gaussian wave-packet. The interaction potential describes the
periodicity or the disorder of the surfaces. The Gaussian wave-packet characterises the atomic beam as an ensemble
of independent particles with finite energy spread. The propagation of the Gaussian initial wave function has been
determined by the solution of the 3D time-dependent Schrödinger equation. The probability density function has
been rendered at the detector region in real space and in momentum space. The slices of the probability density
function parallel to the surface provide the surface topography not only in the case of an ideally periodic surface
structure but also in the case of disorder. © 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction intensity distribution of the diffraction peaks?’.
The incoming particle beam, however, is not com-

The thermal energy atomic scattering from solid pletely monoenergetic, and the disordered surface
surfaces (TEAS) is a useful surface tool to explore vibrates, too. The non-ideal elements cause attenu-
the solid surface top layer [1]. Diffractive scattering ation of the diffractive peaks. A more realistic
is a traditional TEAS measurement method. It is model has been chosen. The main components are
a well-discussed area of TEAS describing the entire the following:
process as a one particle and periodic interaction $ Gaussian wave-packet to describe the incoming
potential problem. The incoming wave is described particle beam;
by a plane wave and the surface is characterised $ interaction potential without the restriction of
by a periodic time-independent interaction poten- periodicity and time independence.
tial. This method — using the Bragg conditions — The aim of the present paper is to investigate
answers the main question: ‘What is the final the scattering mechanism using the three-dimen-

sional (3D) time-dependent Schrödinger equation
(TDSE). This method gives a golden opportunity* Fax: +36-1-242-43-16.
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2. The model normalisation constant, (x0, y0, z0) is the average
position at t=0, s is the standard deviation, i is
the complex unit, k is the wave number vector andQuantum mechanics basically is able to account

for the physical processes of TEAS. Under certain r is the position vector.
Since we focus on model calculations of atomicconditions, e.g. the probe particles are heavy

atoms, a semiclassical model approach is appro- beam scattering from an ideally periodic and disor-
dered solid surface we employ simple time-inde-priate [2,3]. This is the reason we work within the

frame of quantum mechanics. The time-dependent pendent interaction potentials. It should be
emphasised that this model does not demand timeSchrödinger equation has been applied, which

corresponds to an initial value problem. This pic- independence (this case is published later). In the
case of the first example (Section 4), a Lennard–ture provides simple visualisation and physical

interpretation. The physical space has been chosen Jones–Devonshire type of interaction potential has
been chosen [4]:large enough to contain the whole interaction

region of TEAS. This means that at the starting
V(x, y, z)=D exp{−2a[z−disorder(x, y)]}point and at the end point of the time there is no

interaction between the particle beam and the solid
×G1−2bCcosA2p

a
xB+cosA2p

a
yBDH,surface. The wave function stays in the chosen

physical space. The incoming atomic beam is
(2)described by a plane wave in standard models.

The plane wave is an interpretation of an abso- where D is the energy constant, a is the repulsive
lutely monoenergetic atomic beam, which has no constant, b is the corrugation constant and a is
velocity and energy spread. However, as is known, the lattice constant, and disorder(x, y) ensures the
supersonic atomic beams have a narrow FWHM, surface disorder.
because the velocity of the atomic beam may reach A corrugated Morse interaction potential
few tenfold of local sound velocity. A Gaussian describes the Rh(311) surface (Section 5):
wave-packet provides an appropriate mean veloc-

V(R, z)=D(exp{−2a[z−f(R)−disorder(x, y)]}ity and spread of velocity. The Gaussian wave-
packet can be considered as a description of an −2 exp{−a[z−f(R)−disorder(x, y)]}),
ensemble of neutral atoms with minimised uncer-

(3)tainty in real and momentum space. What does
the initial wave packet describe? It describes the where f(R) is the corrugation function and R is
collective behaviour of the particles of the atomic parallel to the surface [5].
beam. The particles of an atomic beam do not
interact with each other, but they have a special
distribution of velocity and energy. The Gaussian

3. Numerical methodwave-packet characterises the atomic beam as a
special quantum ensemble of independent par-

Let us consider the time-dependent Schrödingerticles. A 3D Gaussian wave-packet has been
equation:chosen:

iB
∂Y(r, t)

∂t
=HY(r, t),

Y(x, y, z, t=0)=C expC− (x−x
0
)2

2s2
1

−
(y−y

0
)2

2s2
2 where B is Planck’s constant divided by 2p and H

is the Hamiltonian. A propagation scheme and an−
(z−z

0
)2

2s2
3
D exp(ikr), (1)

operation of the Hamiltonian have to be applied.
A splitting operator method has been chosen with
a third-order accurate formula in time [6 ]. Splittingwhere Y is the wave function, (x, y, z) are the

Cartesian coordinates, t is the time, C is the the Hamilton operator into two parts, for kinetic
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energy operator A and potential energy operator the edge of the chosen region where the computa-
tions are executed [10]. It is worth determiningB, we can write the exact formal solution:

Y(r, t+Dt)=exp[−i Dt(A+B)/B]Y(r, t), in the the norm every time step to exclude the case
mentioned above. The split operator method doescase of a time-independent potential. This solution

is no longer exact for a time-dependent interaction not conserve the energy and the phase. This fact
necessitates monitoring the average energy.potential, but ensures efficient time propagation in

that case, too. Our computations have been exe- Refining the grid in discrete Hilbert space, the
average energy should show time independencecuted in three-dimensional Cartesian coordinate

space. The solution of the TDSE demands time when the Hamiltonian is time independent. The
method of phase controlling is the reversal of thepropagation in every time step and requires a

method to determine the effect of the Hamilton progress of time. One has to recover the original
wave function with an appropriate accuracy. Ifoperator for the wave function. Fast Fourier trans-

formation (FFT) has been applied to calculate there is a relevant difference — in both previous
methods — the grid refining is inevitable. WeHY at every time step, because FFT demands only

N ln N and not N×N operations as required in found that when the average energy was accurate
the phase error was negligible.the finite difference method (N is the number of

the sample points). FFT is an exponentially con- Not only can the time propagation be violated,
but if the grid density is not high enough the topvergent approximation and in momentum space

the derivation means simple multiplication. of the momentum region may be cut. Fortunately,
this fact appears immediately in the averageWe have looked for the approximation to the

exp[−iDt(A+B)/B]=exp[l(A+B)] operator with energy.
The numerical methods demand a correspond-the help of the split formulae [7,8]. A general

decomposition is the following non-symmetric ing scale of the parameters. This is why atomic
units (a.u.) have been used in the computersplitting: exp(clA/2) exp(clB) exp[1/2(1−c)lA] ×

exp[(1−2c)lB] exp[1/2(1−c)lA] exp(clB) exp programme.
(clA/2), where c=1/(2−21/3). It has third-order
accuracy in time [6 ]. Although this expression
involves seven exponential operators, one can show

4. Results and conclusions for He scattering on aby the computations that the numerical algorithms
model surfaceare more efficient than the algorithms based on

the standard second-order accurate split operator
A model He–solid surface system has beenformula.

considered to investigate the physical processes ofTo calculate exp(clA/2)Y it is necessary to
scattering in the quantum mechanical region. Firstwork in momentum space where exp(clA/2) means
of all a completely periodic solid surfacea multiplication and a function evaluation. Then
was analysed in the case of an approximatelywe have to go back to real space by an inverse
30 meV He beam. (Input data (a.u.) in Eq.FFT. The calculation of exp(clB) means a multi-

plication and a function evaluation in real space. (1): x0=y0=18.13, z0=16.67, s
1
=s

2
=s

3
=E5,

k
x
=k

y
=0, k

z
=−4; input data (a.u.) in Eq. (2):It is relevant to control the reliability of the

numerical procedure. We investigated an increas- D=0.00012, a=0.582, b=0.2, a=5.18,
disorder(x, y)=0.) As is known, the scatteringing interaction potential, which approached an

infinite hard wall. The intensity distribution has process leads to a diffractive intensity distribution.
A relevant question is what happens near thebeen calculated and compared with the diffraction

pattern from the hard corrugated wall model [9]. surface in the quantum region. To answer this
problem parallel slices of the probability densityThe test calculations underlined the correctness of

the above-described procedure. In addition, we function (PDF) of the scattered He atoms to the
solid surface have been rendered as time propa-know the split operator method conserves the

unitarity of the wave function if it does not reach gated. The PDF can be obtained as the square of
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Fig. 1. Slices of the PDFs parallel to the surface in real space as time progresses in the case of periodic and stepped surface. (A)
Wave-packet is in the quantum region of the interaction, near the periodic surface (around the classical turning point). (B) Wave-
packet is far from the periodic surface after the interaction. (C) Wave-packet is in the quantum region of the interaction, near the
stepped surface (around the classical turning point). (D) Wave-packet is far from the stepped surface after the interaction.

the absolute value of the wave function calculated (closed channels). The diffraction peaks have more
clear-cut contours than in real space. The shapeby TDSE. In Figs. 1A and 2A one can see PDF

in real and in momentum space, respectively. In of diffraction peaks mirrors the properties of a 3D
realistic intensity distribution (e.g. the FWHM canmomentum space the scattering channels can be

discerned. The closed channels can be seen out of be determined). Obviously, the diffraction peak
intensities can be calculated quantitatively.the Ewald circle. The intensity of the closed chan-

nels evanesces exponentially as time propagates, Secondly, an irregularly stepped surface has been
investigated [11]. The input data are the same asas the wave-packet moves from the surface. The

open channels only provide the direction of the above, except that in Eq. (2) disorder(x, y)=
2(arctan{2[ y−max( y)/2]}/(p/2)+1)/2. The dif-diffraction peaks if one considers energy conserva-

tion and the Bragg condition. The heights and fraction pattern has been deformed to the case of
completely periodic surface. In Figs. 1C, 1D, 2Cwidth of the diffraction peaks continuously vary

within the interaction region. Figs. 1B and 2B and 2D one can see an axis of symmetry of the
diffraction pattern, which is parallel to the y direc-show the situation at the detector region, after

scattering. The intensity distribution has shaped. tion. The position of the axis of symmetry of the
diffraction pattern provides information on theOne can see the Ewald circle directly near the

surface in momentum space. However, the chan- direction of the step. The set of open channels has
distorted to the case of an ideally periodic surface.nels out of the Ewald region have disappeared
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Fig. 2. Slices of the PDFs parallel to the surface in momentum space as time progresses in the cases of periodic and stepped surfaces.
P
x

and P
y

are momenta in the x and y directions, respectively. Ewald circles have been drawn. (A) Wave-packet is in the quantum
region of the interaction, near the periodic surface (around the classical turning point). (B) Wave-packet is far from the periodic
surface after the interaction. (C) Wave-packet is in the quantum region of the interaction, near the stepped surface (around the
classical turning point). (D) Wave-packet is far from the stepped surface after the interaction. The fault-line has been drawn as a
black line.

On drawing the Ewald circle the diffraction direc- pletely smooth the intensity pattern would not be
so structured.tions move left. The 4 mm symmetry has disap-

peared, and only 1 m symmetry can be seen. A
fault-line also appears because of the surface step.
This line corresponds to the intensity minimum,

5. Results and conclusions for He scattering on thewhich stems from the diffraction of two different
Rh(311) surfaceplanes of the stepped surface. In addition to this

minimum line, a double-humped strong maximum
Finally He scattering on the Rh(311) surfacehas evolved. This is again the effect of the step,

was simulated. An approximately 63 meV He beambut now the appropriate waves amplify each other.
was scattered on regularly (nominally) and irregu-One can see many smaller intensity peaks. These
larly (randomly) stepped Rh(311) surfaces [5,11].peaks have arisen from the electron density corru-
The ordered Rh(311) surface is a regularly steppedgation of the periodic regions. The full intensity
surface. Input data (a.u.) in Eq. (1):distribution has arisen from the interference of the

smoother electron density corrugation and the x0=9.86, y0=25.25, z0=16.5, s
1
=s

2
=s

3
=E5,

k
x
=k

y
=0, k

z
=−5.831. Input data in Eq. (3):larger stepped surface. If the surface were com-
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Fig. 3. He scattering on Rh(311). Slices of the PDFs parallel to the surface in momentum space as time progresses in the cases of
regularly and irregularly stepped surfaces. P

x
and P

y
are momenta in the x and y directions, respectively. (A) Wave-packet is in the

quantum region of the interaction, near the periodic surface (around the classical turning point). (B) Wave-packet is far from the
periodic surface after the interaction. (C) Wave-packet is in the quantum region of the interaction, near the irregularly stepped surface
(around the classical turning point). (D) Wave-packet is far from the irregularly stepped surface after the interaction.

D=7.74 meV, a=1.01 Å−1, disorder(x, y)=0 and 3.80 Å is the lattice constant of fcc Rh. The input
the parameters of the corrugation function have data are the same as above, except that in Eq. (3)
been chosen from the literature [5]. The corruga- disorder(x, y)=h(arctan{2[ x−max(x)/2]}/(p/2)
tion parameters have been fitted to the experimen- +1)/2. This step can be achieved using rough ion
tal results by the hard corrugated wall model [5]. bombardment.
Obviously, Eq. (3) does not provide the effective In the case of a regularly stepped Rh(311)
corrugation function [12]. However, it is a good surface Fig. 3A and B shows the scattering dynamic
approach to the interaction potential in first order. near the interaction region and the diffraction

The top facet is partly lacking in the present pattern at the detector region, respectively. The
example of the irregularly stepped Rh(311) sur- structure of the diffraction pattern in the interaction
face. The step height is equivalent to the distance region is similar to the diffraction pattern in the
of the neighbouring facets (311): detector region. A relevant property of this diffrac-

tion pattern is the dominance of the in plane
h=

2p

|G(311)|
=

a

E11
, scattering. There are only low order out-of-plane

diffraction peaks with not too high intensities.
The irregularly stepped Rh(311) surface pro-where G is the reciprocal lattice vector and a=
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