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Abstract

He-clean Rh(3 1 1) scattering has been discussed within the frame of classical and quantum mechanics. These models
of thermal energy atomic scattering on solid surfaces are based on the one particle problem. In the classical case the
mass point of the He atom is scattered on the interaction potential of He-Rh(3 1 1) system. The classical equation of
motion is solved. The scattering has been investigated as a function of impact parameters. Detailed computations show
three-dimensional chaotic effects on trajectories, phase diagrams, deflection angle function and dwell time function. In
the case of quantum mechanical model the He atomic beam is described as a Gaussian wave packet. Its time propa-
gation is governed by the time dependent Schrodinger equation. Both the classical and quantum models show trapping
effect. The classical model shows chaotic scattering and a non-realistic intensity distribution. The more realistic
quantum model provides correct intensity distribution but no trace of chaotic scattering. The results underline the idea
that many published classical chaotic computations do not describe any real physical system. © 2001 Elsevier Science
B.V. All rights reserved.
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1. Introduction structure, disorder and phonon spectra. In addi-

tion to these physical properties, TEAS can de-

The thermal energy atomic scattering (TEAS)
from solid surfaces is very useful tool in the energy
range of 10-100 meV because the usually applied
He probe particles do not penetrate into the sur-
face but provide information about the top layer
[1-3]. TEAS provides information about surface
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scribe the quantum processes on the solid surface.

First the classical model leading to three-
dimensional (3D) chaotic behaviour of He-Rh(31 1)
is considered. The phenomenon of chaos arises as
a chattering region of impact parameter vs de-
flection angle function, a chattering region of im-
pact parameter vs dwell time function, trapped
trajectories of particles or semi-closed curves of
real space vs momentum space diagrams.

After that a quantum mechanical model of
He-Rh(311) is applied. The interaction of neu-
tral atoms and solid surface is strictly quantum
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mechanical [4]. What does it mean in the picture of
quantum mechanics? Since the interaction is gene-
rally strong, Ehrenfest’s theorem invalidates the
picture of the trajectories. If we adhere the purely
stochastic (‘“‘Heidelberg approach”) discussion of
quantum chaos; the dwell time of atoms near the
surface has to be determined as a function of ap-
propriate physical parameters [5]. If the dwell time
fluctuates the quantum chaos appears.

Section 2 describes the 3D classical TEAS model
and the numerical method for solving the appro-
priate differential equation system. Time depen-
dent quantum mechanical model of TEAS and its
numerical solution are presented in Section 3. The
interaction potential of He-Rh(311) system is
constructed in Section 4. Classical and quantum
mechanical calculations are shown in Sections 5
and 6, respectively. At last the conclusions can be
read in Section 7.

2. Model of classical atom surface scattering

A short description of classical model is shown
as follows. The classical model of TEAS is based
on the one particle problem. It means that the
mass point of the particle is scattered on an ap-
propriately chosen interaction potential. This in-
teraction potential also describes the solid surface.
The motion of the particle mass point is governed
by Newton’s second law in an appropriate inertial
frame. Of course, we have to fix the initial condi-
tions outside the interaction region. The initial
conditions are given by the position vector and the
velocity of the mass point at the initial time.
Moreover it is worth to characterise the position
vector as a function of the so called impact pa-
rameters. The impact parameters ensure that
the mass point of the particle may scan different
regions of the surface. According to the model
description let us prescribe the equations of
the classical model [6]: m(0*r/0?) = —grad V' (r),
where m is mass of the atom, r is the position
vector, ¢ is the time and J(r) is the interaction
potential. In 3D case the direction x and y are
parallel and the direction z is perpendicular to the
surface. The initial conditions have been chosen
in the following manner: x; = —z;.tg®; cos @; +

Ca, i = _Zmaxtg@i Sin¢i + Cyb; Zi = Zmax, Uxi =
\/2E /m sin O; cos &;, vy = /2E/m sin O; sin @
and v; = —+/2E/m cos @;, where subscript i de-
notes initial state, z,, is a large enough distance
measured from the surface belonging to the
asymptotic region of the scattering. @; is the inci-
dent and @; is the azimuthal angle. ¢, and ¢, are
the impact parameters in the direction x and y,
respectively. The impact parameters are in the in-
terval [0,1]. @ and b are lattice constants. vy, v,; and
v; are the initial velocities in the direction x, y and
z, respectively. E is the average energy of the in-
cident He particle. Trajectories are calculated until
Z 2 zmax becomes valid. The crucial point of the
above described model is the numerical method to
solve the system of differential equations. For ex-
ample the method based on the explicit Runge-
Kutta formula does not lead to correct results [7].
However, it can be considered as the best function
of “first try” for most problems. For stiff problems
— as the present problem is — the variable order
solver based on numerical differentiation formulae
(NDFs) is recommended. We should recognise
that the backward differentiation formulae (also
known as Gear’s method) are usually less efficient
than NDFs [8].

3. Quantum mechanical model

For the description of the problem outlined in
the introduction the time dependent Schrodinger
equation (TDSE) will be solved. The model as-
sumptions for solving it are: Gaussian wave packet
to describe the incoming particle beam and the
interaction potential with no restriction of peri-
odicity and time independence. Basically, quantum
mechanics is able to describe physical processes of
TEAS. In certain conditions — e.g. the probe par-
ticles are heavy atoms — semi-classical model ap-
proach is appropriate [4]. The particles of atomic
beam do not interact with each other, but they
have a special velocity and energy distribution.
The Gaussian wave packet characterises the atomic
beam as a special quantum ensemble of indepen-
dent particles. 3D Gaussian wave packet has been
chosen as an initial wave function:
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T(xvyazat = 0) = Cexp(—(x _x0)2/20%

- _y0)2/2(;§ —(z —20)2/203)
x exp (ikr), (1)

where ¥ is the wave function, (x,y,z) are Carte-
sian coordinates, ¢ is the time, C is the normali-
sation constant, (xo,)p,zo) is the average position
at t =0, o is the standard deviation, 1’ is the
complex unit, k is the wave number vector and r is
the position vector.

Let us consider the time dependent Schrodinger
equation: i4(0¥(r,t)/0t) = H¥(r,t), where 7 is the
Planck constant divided by 2n and H is the
Hamiltonian. A propagation scheme and an ap-
plication of the Hamilton operator have to be
applied. By splitting the Hamilton operator into
two parts — the kinetic energy operator 4 and
the potential energy operator B — in the case of
time independent potential we can write the exact
formal solution: ¥(r,z+ At) = exp[—iAt(4 + B)/
K]¥(r,t). The solution of TDSE demands time
propagation at every time step and requires a
method to determine the effect of the Hamilton
operator on the wave function. We have chosen an
efficient splitting operator method with third-order
accurate formula in time [9-14] and Fast Fourier
transformation (FFT) has been applied to calcu-
late HY at every time step [15].

4. The interaction potential of He—Rh(3 1 1) system

The construction of the interaction potential of
He-Rh(311) system is based on the results of [1].
The chosen Morse potential is completed with a
corrugation function resulting from the inverse
hard corrugated wall (HCW) model computations
[1]. The potential is the following:

V(R,z) = Dlexp(—2x(z — {(R)))
— 2exp(—a(z = {(R)))], (2)

where {(R) is the corrugation function, D = 7.74
meV, o = 1.01 A , R is parallel and z is perpen-
dicular to the surface. Obviously, Eq. (2) does not
provide the effective corrugation function [16].

However, it is a good approach to the interaction
potential in first order.

The Fourier representation of the corrugation
function of the clean Rh(311) surface is [1]:

E(R) = Cm Z (amn cos (m %Tnx) cos (n %y)

myp =0

) < 2n ) < 2n ))
+ by sin (m—x | cos (n—y | |,
a b

3)
where
¢ =1, if m>0andn>0;
Con =13, if mor n=0;
Com =0, if m+n=odd.

The corrugation parameters in Eq. (2) from Ref.

[1]:
axy — 0.27 1&,
a; = 0.03 A,

as = —0.02 A, by =0.02 A,
by = —0.02 A, by =—0.02 A.

5. Results of 3D classical scattering computations

The following computations consider out-
of-plane scattering, too. Since the corrugation
function [1] is two-dimensional (2D) in Eq. (1), the
He-Rh(311) scattering is a 3D problem. The
dwell time and deflection angle functions are 2D
functions. It is appropriate to demonstrate the
chaotic behaviour by contours. That is one of the
impact parameters has to be fixed while the other
is changing.

Fig. 1A and B refer to 3D trajectories and phase
diagrams for ¢, = 0 and ¢, = 0.54. Fig. 1C and D
show the same curves for ¢, = 0.71 and ¢, = 0.54.
The regular and irregular (trapped) trajectories
can be seen in Fig. 1A and C. Fig. 1B and D render
phase diagrams. The semi-closed trajectory in Fig.
1D corresponds to trapping phenomenon.

Fig. 2 shows the dwell time function as a func-
tion of impact parameters. The impact parameters
are ¢, = 0 and c,. ¢, varies in the interval [0.2,0.6].
One can see a regular curve in Fig. 2A. Chaotic
phenomenon does not arise. If ¢, = 0.7 a chatter-
ing region appears, which is around c¢, = 0.54
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Fig. 1. Trajectories and phase diagrams of classical He-Rh(311) 3D scattering (atomic units are used). The filled circles denote the
beginning of the curves. (A) Regular trajectory can be seen when the impact parameters are: ¢, = 0.54 and ¢, = 0. (B) Phase diagram
for the direction z-momentum p. of the case (A). (C) Irregular trajectory can be seen when the impact parameters are: ¢, = 0.54 and
¢, = 0.7111. (D) Phase diagram of the direction z-momentum p, of the case (C).

(Fig. 2B). In Fig. 2C and D ¢, = 0.7, but near the
chattering region the dwell time curve is zoomed
in. These figures preserve the property that the
curves contain regular and irregular parts. The
curves give self-similarity that is a convincing evi-
dence of 3D classical chaotic scattering [17].

6. Results of 3D quantum scattering computations

In Eq. (1) the main input parameters of the He
beam are (in atomic units, abbreviation: a.u.):
o=+/5 xy=9.8644, 3, =12.681, zy =11 and
k= (k, =0,k, = 3.0636,k, = —2.1452), k =3.74.
The average energy of the He atom is: ~26 meV.
The incident angle is: ®; = 55° and the azimuth
angle is: @; = 0°. Sample points 32, 96 and 64 are
chosen in the direction x, y and z, respectively. In
Fig. 3A and B the probability density functions
(PDF) are shown in the real and in the momentum
space, respectively as the wave-packet approaches
the classical turning point ((z) =2.62 a.u., ()’

stands for the average). PDF is equal to |¥(r, )|,
PDF is split into slices parallel to the solid surface
since PDF is a function of three variables in space.
Fig. 3A and B show the slices at z = 2.62 a.u. when
(z) =2.62 a.u. In that region the interaction is
essential. One can see a very important fact, for
|k| > 3.74 a.u. the probability significantly differs
from zero. This corresponds to a bound state. Fig.
3C and D show PDF after the scattering, beyond
the interaction region in the real and in the mo-
mentum space, respectively. One can also see in-
plane and out-of-plane scattering. The component
of the wave number vector k parallel to the sur-
face is shorter than 3.74 a.u. on the contrary
when the He atom is near the top layer of the
Rh(311) surface. The attractive part of the inter-
action potential leads to longer lifetime near the
surface.

The determination of the escaping directions
requires detailed scanning of transient probability
over the solid angle. These should contain the
diffraction peaks, the selective adsorption and
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Fig. 2. Impact parameters vs dwell time curves of classical He-Rh(3 1 1) 3D scattering (atomic units are used). ¢, and ¢, are the impact
parameters in the direction x and y, respectively. (A) Regular curve when ¢, = 0 and (B) Irregular curve when ¢, = 0.7. Around
¢, = 0.54, a chattering region appears in the curve. (C) and (D) are the same cases as (B), except the curve is zoomed in. Regular and

irregular parts of the curves occur.

chaotic effect. In the case of quantum chaos the
PDF should show chattering region. Unfortu-
nately, in the case of He-Rh(311) system quan-
tum chaotic effects could not be found.

He scattering on Rh(3 1 1) surface shows chaotic
scattering within the frame of classical mechanical
model. The classical chaos does not imply quan-
tum chaos by all means [18]. The quantum me-
chanical model washes out the ““trajectories’ since
the trajectories do not exist by Ehrenfest’s theorem
when the interaction is quantum mechanical. The
classical chaos is thought to be caused by the
strong interaction (quantum mechanical interac-
tion) of He atom—Rh(311) system. Further in-
vestigations are needed to clarify the physical
phenomena of He-Rh(311) scattering. A con-
vincing quantum mechanical method has to de-

termine the dwell time of He atoms near the
surface as a function of energy [5] or as a function
of measurement time. The measurement time is
defined as a time interval of experimental process.
When the dwell time function provides chaotic
(stochastic) behaviour, the He—Rh(3 1 1) scattering
also shows quantum chaos. This is the real physi-
cal picture of the scattering. Experimentally, flight
time measurement is able to realise this idea.
Namely, flight-time measurement gives the func-
tion of intensity vs flight time. When the graph is
stochastic the probability of the occupied states
at the interaction region fluctuates, because the
intensity distribution is always related to the
probability of the current state. The fluctuating
occupied states show a small change of the scat-
tering He beam energy or of the geometrical
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Fig. 3. Illustration of quantum mechanically modelled He—-Rh(3 I 1) scattering (atomic units are used). PDF split into slices parallel to
the solid surface. P, and P, are the moment in the direction x and y, respectively. (A) and (B) PDF is shown in the real space and in the
momentum space, respectively when the wave packet is near the classical turning point ((z) = 2.62 a.u., z = 2.62). The radius of the
circle in the origin is 3.74 a.u. (C) and (D) PDF is shown in the real and the momentum space when the wave packet is at the detector

region. The radius of the circle in the origin is 3.74 a.u.

arrangement which lead to discrete steps of the He
atom state.

Let us define the dwell time based on [5] as
follows:

P(i) = / t /V (e, P dV dr, @)

where #, is the time when the measurement is
started, and ¢ > ¢, is the measurement time. J; is
the investigated volume. P(f) is a fraction of
(t — ty). P(r) gives the time spent on average by the
He atom of the beam in the volume J;. Namely,
the He atom beam is a quantum mechanical en-
semble of independent He particles. If the graph of
P(t) behaves stochastically the wave function of
He atom beam changes stochastically in ¥; since
the region where the particle can be found, is rel-
evant to the state of the He beam.

P(r) has been calculated by four-dimensional
trapezoidal numerical integration. The wave func-
tion has been computed by time dependent Schro-
dinger equation with time step short enough.
Different volumes 7, in the physical space have
been chosen. Unfortunately, either by this method
no stochastic behaviour could be found. The solid
angle has been scanned systematically, however
chaos has not been found.

7. Conclusions

He-Rh(311) system has been investigated by
classical and quantum mechanical model. The
computations underlined the effect of He atoms
trapping in the case of classical and quantum
mechanical model, respectively. Quantum model



E. Balazs et al. | Surface Science 482-485 (2001) 1145-1151 1151

provides more realistic intensity distribution than
classical model. Relevant difference can be found
in the description of chaos. Classical and quantum
models demand absolutely different theory and
method to explore the chaos. Classical model
computations show chaotic phenomena as against
quantum model computations.
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