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b Furukawa Electric Institute of Technology Ltd., H-1158 Késmárk u. 24-28, Budapest, Hungary
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Abstract

Two extensions of weighted index method are presented in order to calculate the splitting of degeneracy for non-cir-

cular vertical-cavity surface-emitting lasers. Both of them automatically satisfy which transverse optical modes split,

and give a reliable approximation for the resonant frequencies, threshold gains and confinement factors. The intuitive

effective radius method traces back the splitting for different effective aperture radii which are defined according to the

transverse intensity distributions. The hybrid analytical axial and numerical lateral method is more precise from a

_mathematical point of view, and provides the mode patterns as well as the optical data.
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1. Introduction

Vertical-cavity surface-emitting lasers (VCSELs)

have shown promise in telecommunication applica-
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tions due to their particular properties. They have

good optical beam quality, excellent coupling effi-

ciency into optical fibers, are suited for high-speed

modulation and for cost-effective mass production.

A further advantage is that they have the possibility

to be integrated into 2-D arrays. The performance

of VCSELs has improved significantly through the
use of oxide or air apertures [1,2], which provide
ed.
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1 Here and below, we follow the Schönflies notation (see, e.g.

[18]). This labelling system is generally used in spectroscopy and

for the description of molecular symmetry.
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transverse confinement for the injected carriers as

well as for the optical field.

One goal of VCSEL-design is to reduce the

threshold current. In relatively large devices it is

proportional to the volume of the electrically
pumped active region, so that smaller apertures

are required. As a consequence of good transverse

optical confinement VCSELs usually support sev-

eral transverse modes, and their intensity is deter-

mined by the strongly coupled electronical–optical

system. The complicated mode behavior seems to

be typical for VCSELs with oxide apertures. Con-

siderable work has been carried out to identify
mechanisms that determine the transverse mode

formation: interaction of cavity structure and gain

medium [3], induced birefringence [4,5] and non-

circular oxide-windows [6] have been found to play

important roles for VCSEL�s emission.

In this work, we focus only on the optical

mode simulation resulting in the resonant

frequencies, threshold gains and optical mode
patterns. Several models with different approxi-

mations and computation efforts have been pre-

sented in this field [7]. The effective index

method (EIM) [8,9] replaces the axial structure

of the diode with effective indices for the core

and cladding(s), and gives an analytical solution

similar to the circular optical waveguides for the

radial intensity distribution. The weighted index
method (WIM) [10,11] takes the radial distribu-

tion into account for re-calculating the axial

problem, and the final solution is got by an iter-

ation between the two directions. Both methods

have been applied only for circularly symmetric

VCSELs. They neglect diffraction and scattering

losses, which have to be calculated separately

[12,13] in order to give a corrected value for the
threshold gain. 3-D finite element method

(FEM) [14,15] is a numerical solution of the open

cavity eigenvalue problem, where assuming circu-

lar symmetry decreases the computation domain

and simulation time. This numerical technique

is, however, always slower than analytical meth-

ods by few order of magnitudes.

It may occur that the oxide aperture was not
ideally circular due to manufacturing reasons. If

oxidation speed were ideally isotropic, the aperture

shape would be the exact replica of the mesa geom-
etry. Some groups have already reported that oxi-

dation speed in [1 0 0] direction is higher compared

to that of [1 1 0] direction [16,17], and the final

aperture may differ from the transverse mesa

shape. The violation of cylindrical symmetry can
remove the degeneracy of the eigenmodes and

modify the important optical parameters and also

the mode patterns.

We present two models in this article that de-

scribe both qualitatively and quantitatively the ef-

fects of non-circularity, and do not demand large

computational resources. They fit the hierarchical

modeling concept as they improve from semi-ana-
lytical to numerical methods, and simultaneously

increase from 1 + 1 dimensional modeling (WIM)

to 1 + 2 dimensions. A group theoretical introduc-

tion is given first, which is used to predict the mode

splitting. Effective radius-weighted index method

(ER-WIM) is presented next to obtain a simple

quantitative analysis of the effect of non-circular

apertures. Hybrid WIM provides a deeper mathe-
matical description of the resonant cavity. Finally,

we compare the calculated optical data to mea-

surements and conclude.
2. Theory

2.1. Group theoretical considerations

As the modes of the electromagnetic field follow

the symmetry of the laser diode, they should fol-

low the transformational properties of the respec-

tive symmetry group. Accordingly, as a VCSEL of

cylindrical symmetry belongs to the C1v symmetry

group, each optical mode of the diode has the

same transformational characteristics as one of
the irreducible representations of the group.1 In

Table 1, a part of the character table of the C1v

group can be seen together with the shape of the

first few LP modes. Only the LP0m modes belong

to the non-degenerated A1 irreducible representa-

tion, all the others are doubly degenerated as they

belong to any of the E representations.



Table 1

The C1v point group and LP-modes

C1v I 2Cu
1 Pattern Symbol

A1 1 1 LP01

A2 1 1

E1 2 2cos(u) LP11

E2 2 2cos(2u) LP21

E3 2 2cos(3u) LP31

E4 2 2cos(4u) LP41
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If the shape of the aperture is distorted, it

breaks the cylindrical C1v symmetry of the diode

and the optical modes follow the transformational

properties of the new group. The correlation of the

old and the possible new groups can be seen in

Table 2. For the sake of compatibility, A, B and

E symbols are applied for the irreducible represen-

tations of the C1v point group. If, for example, the
aperture has a square shape, the diode symmetry is

C4v and every second, originally degenerated

(E-species) pair of modes should split and form

individual non-degenerated A1 and A2, or B1 and

B2 modes. If the square shape breaks further

(e.g., rectangular or ellipse shape), the new C2v

symmetry group prohibits any degeneracy. On

the basis of this simple consideration we can easily
estimate the degeneracy or non-degeneracy of a

given mode.

2.2. Effective radius-weighted index method

The shape of the oxide aperture investigated in

this article is a curvilinear tetragon, as realistic
Table 2

Correlation between C1v, C4v and C2v symmetry groups

C1v C4v C2v

A1 A1 A1

A2 A2 A2

E1 E1 B1 + B2

E2 B1 + B2 A1 + A2

E3 E3 B1 + B2

E4 A1 + A2 A1 + A2
apertures usually have two perpendicular symme-

try axes and four edges, and are round elsewhere.

A good example illustrating the corners and their

possible effects on reliability issues can be found

in [19]. From simulation aspects a formula is
needed that approximates this shape. Debernardi

et al. [20] suggested to describe a general aperture

with the following Fourier-series:

rðuÞ ¼ r0 1þ
X
k

D2k cosð2kuÞ
" #

; ð1Þ

where r0 is the original (averaged) radius, the D2k

values denote the coefficients. D4 controls the

square-like shape. Using appropriate values for

the D2k parameters a wide spectrum of aperture

shapes can be approximated (see Fig. 1(a)). This

formula allows, however, only round shapes, and
together with ER-WIM may lead to unwanted

degeneracies as discussed in details at the end of

this section. The following formula has been found

to fit better to the experimental shape (see Fig.

1(b)):

rðuÞ ¼ cr0 þ ð1� cÞrsqðuÞ; ð2Þ
where rsq(u) describes a square in polar coordinate

system. With the help of the c ‘‘cylindricity’’
parameter the circle–square transition can be
Fig. 1. Aperture models: (a) shows the shape defined by Eq. (1)

with D2 = 0 and D4 = 1/16. Curves (b)–(d) are given by Eq. (2)

with c = 0.5, 0.25 and 0.75, respectively.
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scaled. The realistic experimental oxide shape is

closest to the one halfway between the ideal circu-

lar and square cases (Fig. 1(b)). Fig. 1(c) and (d)

display model apertures for comparison with cy-

lindricity parameter of 0.25 and 0.75, respectively.
The model aperture belongs to the C4v symme-

try group, as it still has two symmetry axes and

shows a rotational symmetry of 90�. As a conse-

quence of Table 2, for odd l values the degeneracy

of the LPlm modes remains, while for even ones

does not. Since degenerated modes have the same

optical properties they can be observed together,

and the sum of their intensity distribution forms
distorted rings.

Apertures of general shape can be approxi-

mated with cylindrical apertures of proper radius

from certain point of view. Noble et al. [21] used

a circular aperture having the same area instead

of the assumed square aperture ðr ¼ a=
ffiffiffi
p

p
Þ to

compute the optical parameters of the fundamen-

tal mode. The simple condition for the areas does
not answer the degeneracy splitting. By defining

different effective radii for the splitted transverse

modes and executing two WIM-iterations the ef-

fect could be reproduced. Therefore we define the

effective radii as a weighted integral of the r(u)
function describing the shape

R1;2 ¼
R 2p
0

rðuÞg1;2ðuÞ duR 2p
0

g1;2ðuÞ du
: ð3Þ

Here, g1,2(u) denotes the weighting factors of the
two modes, respectively. They must be chosen such

a way that the two effective radii should differ in

the case of degeneracy splitting (for even l values),

and are equal if degeneracy remains (for odd l val-

ues). The optical parameters calculated from these

radii should also match the experimental data. The

right choice for the weighting functions can be the

intensity distributions because they intrinsically re-
flect the existing or non-existing degeneracies.

Assuming that the aperture only slightly deviates

from the circle, the u-dependencies of the known

intensity patterns of the circular structure were

used:

g1;2ðuÞ ¼
sin2ðluÞ
cos2ðluÞ

 !
: ð4Þ
This formula gives one effective radius for l = 0.

With the aperture shape of (1) produces the

same radii for odd l values according to the

previous expectation. If the last non-zero coeffi-

cient in the Fourier-series is D2K, it provides two
different radii only if l 6 K even. This means

that in order to predict correctly the degeneracy

splitting of higher order modes further coeffi-

cients must be defined when using (1). This

problem does not occur when using the shape

function (2).

2.3. Hybrid weighted index method

In this chapter, a simple scalar formulation of

WIM is presented for general non-circular aper-

tures. It predicts correctly the splitting of degener-

acy due to the distortion of the rotational

symmetry, but does not take polarization into

account. An improved vectorial version of this

method is also feasible, but demands a more diffi-
cult handling of the boundary conditions (in which

the electric and magnetic field components are

coupled) at the core-cladding interface. Let us

write one dominant transverse field component in

the form of E(x,y,z,t) = E(x,y,z)eixt. The field must

satisfy the Helmholtz-equation

Dþ eðx; y; zÞx
2

c2

� �
Eðx; y; zÞ ¼ 0; ð5Þ

where e is the piecewise constant dielectric func-

tion. In general cases E(x,y,z) is not separable

because of the diffraction at the oxide aperture.

By neglecting this effect the following separation

is made in the longitudinal and the lateral compo-

nents, but no harmonical dependence is assumed
in the azimuthal angle: E(x,y,z) = P(x,y)Q(z).

Inserting this ansatz into Eq. (5)

o
2QðzÞ
oz2

P ðx; yÞ þ DT Pðx; yÞQðzÞ

þ eðx; y; zÞx
2

c2
Pðx; yÞQðzÞ ¼ 0; ð6Þ

where DT = o2/ox2 + o2/oy2 is the transverse La-

place-operator. By multiplying with Q*(z) and

integrating against z from the lower to the
upper boundary planes of the VCSEL, and mul-

tiplying with P*(x,y) and integrating for the
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xy-cross-section of the diode, the original partial

differential equation splits into two coupled

equations:

Qj o
2Q
oz2

� �
þ x2

c2
QjejQh iðx;yÞ

� �
P ðx; yÞ

þ QjQh iDT P ðx; yÞ ¼ 0; ð7Þ

hP jDT P i þ
x2

c2
hP jejP iðzÞ

� �
QðzÞ þ hP jP i o

2QðzÞ
oz2

¼ 0:

ð8Þ

In order to make the following derivations simpler,
P and Q are assumed to be normalized. The coor-

dinates in the lower indices in the above expres-

sions show that the weighted dielectric constant

may depend on the coordinates omitted from the

integration. For piecewise constant dielectric func-

tions ÆP|e|Pæ(z) is a step-like function of the z-coor-

dinate, and its values can be denoted as heiPj , where
j refers to the jth layer (j = 1 denotes the substrate,
j = N is air). The same way ÆQ|e|Qæ(x,y) can be re-

duced to heiQi , where i = 1 for the core region and

i = 2,3, . . . ,M for the cladding(s). Eq. (8) is a sec-

ond-order ordinary differential equation in the

jth layer, and the general analytical solution reads

as follows:

QjðzÞ ¼ ajeibjz þ bje�ibjz ð9Þ

and

b2
j ¼ P jDT Ph i þ x2

c2
eh iPj ðj ¼ 1; . . . ;NÞ ð10Þ

is the propagation constant. Q(z) and oQ(z)/oz

must be continuous at each interface between the

layers, and only outgoing waves are allowed out

of the structure. This problem is solved by the

transfer matrix method and a root finding routine

on the complex frequency-plane. Knowing the

general solution for Q(z) we define k2i as

k2i ¼
x2

c2
eh iQi þ Q

o
2Q
oz2

����
� �

¼ x2

c2
eh iQi � Q b2

j

��� ���QD E

¼ x2

c2
eh iQi � b2

� �Q ði ¼ 1; . . . ;MÞ: ð11Þ
Eq. (7) can be rewritten, and it is clear that ki plays

the role of the lateral propagation constant

k2i Pðx; yÞ þ DT P ðx; yÞ ¼ 0 ði ¼ 1; . . . ;MÞ: ð12Þ

Before describing in detail how to solve the lateral

problem, we point out the iterational procedure

between the longitudinal and lateral dimensions.

Multiplying Eq. (12) with P*(x,y), and integrating

over the whole cross-section of the diode

XM
i¼1

Z
Ai

P �ðx; yÞk2i Pðx; yÞ dxdy þ P jDT Ph i ¼ 0;

ð13Þ

where Ai refers the ith region. The sum gives the
weighted lateral propagation constant Æk2æP.
Inserting it into Eq. (10) the same expression is

got for b2
j as Eq. (11)

b2
j ¼

x2

c2
eh iPj � k2

� �P
: ð14Þ

The order of the iteration is the following. At first

step the axial part is solved assuming Æk2æP = 0.

The weighted axial propagation constant Æb2æQ is

calculated next. Substituting it into Eq. (11) the

lateral problem is computed. With the lateral

propagation constant Eq. (14) is used to refine

the axial solution, etc. The iteration stops if the
difference for both the real and imaginary parts

of the frequency were lower in a cycle than a pre-

viously defined threshold.

Now we move on the solution of Eq. (12) in case

of non-circular apertures. While for special cylin-

drical structures analytical solutions are known:

the Bessel-functions, here only numerical methods

are applicable. Finite difference method (FDM)
has been chosen on a non-equidistant rectangular

grid. Since the problem is an eigenvalue equation

for the complex frequencies as eigenvalues and

for the field distributions as eigenvectors, a system

matrix containing only the inner nodes of the core

and cladding(s) is wanted. The nodes at the inter-

faces must be expressed using the boundary condi-

tions and eliminated from the unknown variables,
and simultaneously the fields at the surface were

taken equal to zero. In order to give an elegant

solution, an algebraic matrix-description of the fol-

lowing differential equation is presented:



Table 3

The structure of the simulated VCSEL

Periods Type Thickness (nm) Index
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x2

c2
eh iQi � b2

� �Q	 

P ðx; yÞ þ DT P ðx; yÞ ¼ 0: ð15Þ

Let us denote the discretized values of P(x,y) as �P .
The discretized difference equation has the form of

x2

c2
��e� b2

� ���I	 

�P þ ��D�P ¼ �0; ð16Þ

where ��e denotes the diagonal matrix of the dielec-

tric constant, ��I the identity matrix and ��D the sparse
matrix of the transverse Laplace-operator. Rear-

ranging the equation one gets

x2

c2
��e�P ¼ b2

� ���I � ��D
� �

�P ; ð17Þ

which is a generalized algebraic eigenvalue prob-

lem, and can be solved using standard routines. Fi-

nally, the propagation constants were expressed

using Eq. (11). It is important to note that

the transverse confinement factor is simply

�coreP* (x,y)P(x,y) dxdy, the intensity in the core.

18 Al0.2Ga0.8As 60.9 3.492

Al0.9Ga0.1As 69.4 3.065

1 Cavity 244.4 3.482

1 Al0.9Ga0.1As 46.3 3.065

AlAs/Al2O3 23.6 3.002/1.7

Al0.2Ga0.8As 60.9 3.492

24 Al0.9Ga0.1As 69.4 3.065

Al0.2Ga0.8As 60.9 3.492
3. Results

The effective radius-WIM and the hybrid WIM

techniques were tested on a GaAs/AlGaAs multi-

mode VCSEL designed for 850 nm emission. It

consists of a k-length cavity and 18 pair top- and
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25 pair bottom-DBR mirrors. The first low index

layer below the cavity was partially oxidized, the

aperture shape is parametrized as a square–circle

transition with a cylindricity of 0.5 (Fig. 1(b)).

The detailed description can be found in Table 3.
In Fig. 2, the calculated blueshift of the modes ver-

sus the aperture diameter can be seen. Both the

predicted mode splitting and the absolute wave-

length values show reasonable agreement with

the experimental data (Fig. 3), which was mea-

sured according to the configuration shown in

Fig. 4. A VCSEL wafer of 20 nm · 30 nm was

placed on the target holder, and the laser output
of a single diode was coupled into a graded-index

multi-mode fiber of 50 lm core diameter with the
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results are drawn with continuous, effective radius-WIM results



Fig. 3. Experimental emission spectrum.

Fig. 4. Setup to recor

1 2 3
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Aperture di

Tr
an

sv
er

se
 c

o
n

fi
n

em
en

t 
fa

ct
o

r

LP
01

LP
11

LP’
21

LP"
21

LP
01

LP
11

LP’
21

LP"
21

Fig. 5. Confinement factor ve

P. Nyakas et al. / Optics Communications 250 (2005) 389–397 395
help of two lenses and a mirror. An Ando AQ-

6315 spectrum analyzer with 0.05 nm resolution,

connected to a PC, was used to record the spec-

trum. The environmental temperature was fixed

on room temperature, while the VCSEL was dri-
ven by a current of 4.5 mA. The redshift of the

modal wavelengths due to the slightly increased

cavity temperature was calibrated by changing

the refractive indices of all layers according to an

empirical formula compared to their background

values. The wavelength split between the two

LP21 modes is a direct consequence of the different

lateral wavenumbers (kis in Eq. 12), as the mode
d the spectrum.

4 5 6 7 8
ameter [µm]

rsus aperture diameter.
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with shorter wavelength experiences a shorter

effective radius according to its lateral intensity

distribution. The mode splitting decreases as the

cylindricity parameter increases, finally vanishing

in case of the perfect circular aperture.
The dependence of transverse confinement fac-

tor on the aperture size is plotted in Fig. 5. A small

difference between the cutoff aperture diameters of

the two LP21 modes also appears. The results of

the two methods are nearly the same, near cutoff

a difference of 5–10% can be observed between

the calculated confinement factors for each mode.

In Fig. 6, the intensity pattern of the fundamental
and some higher order modes can be seen. They

were calculated by the lateral part of hybrid

WIM with FDM. As previously predicted, the first
Fig. 6. Mode patterns calculated with FDM. The aperture

shape is indicated with white curve.
higher order mode, LP11, has remained degener-

ated, the degeneracy of LP21 has been splitted

(with effective radii of 92% and 87% of r0, respec-

tively), and LP31 is degenerated again. It is impor-

tant to note that all linear combinations of two
degenerated modes are appropriate solutions as

well; and since degenerated modes can be seen

together distorted ring-like near fields can be

observed. However, if the higher order degener-

ated LP21 modes come into play while increasing

the current, LP0
21 will significantly dominate over

LP00
21, which can be clearly realized on experimen-

tal near field patterns.
4. Conclusion

Two methods have been presented in order to

calculate the degeneracy splitting and important

optical parameters for non-circular apertures.

These models do not aim to implement the most
accurate and exact full 3-D technique, but to find

a compromise between reliable optical data and

relatively short simulation time. Both of them have

their level in the hierarchical modeling concept.

The effective radius-WIM is an intuitive extension

of circular WIM, and can be very easily joined to

the original algorithm from computational point

of view. The proposed scalar hybrid WIM de-
mands to solve a different problem, but has a

stronger physical basis. Although both methods

neglect the diffraction loss (which may have a sig-

nificant effect in case of small apertures), they can

be extended with an estimation based on the Fres-

nel-approximation. A natural future improvement

can be the vectorial hybrid WIM, in which the

same separation is made for both the electric and
magnetic fields, but they are coupled at the core-

cladding boundaries, and this leads to more com-

plex system matrix.
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