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Resolution and transfer width of thermal energy atomic scattering
ž /from solid surfaces TEAS
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Abstract

The resolution of TEAS has been investigated as a function of energy spread of atomic beam. The model calculations
have been executed within the framework of time dependent Schrodinger equation. The energy spread of realistic atomic¨
beam has been taken into account by a wave-packet. The wave-packet describes the atomic beam as an ensemble of
independent particles by quantum mechanics. Taking ideally periodic surface the resolution of diffraction peaks increases
when the energy spread is decreased. This fact underlines the higher efficiency of the supersonic atomic source than the
effusive atomic source. Furthermore the transfer width of experimental equipment increases—when the atomic beam
monochromaticity is also increased—according to the concept of the transfer width. The relation between the transfer width
and the size of the period of the surface topography significantly determines the resolution of the diffraction pattern. q 1999
Elsevier Science B.V. All rights reserved.

Keywords: TEAS; Resolution; Transfer width

1. Introduction

The thermal energy atomic scattering from solid
Ž .surfaces TEAS is an efficient method to investigate

w xthe very top layer of the surfaces 1 . TEAS provides
information on surface structure, phonon spectra and
impurity. In addition to these physical properties
TEAS can describe the quantum processes on the
solid surface. Present paper focuses on the question
of the resolution and the transfer width of TEAS.
The interaction of neutral atoms and solid surface is

w xstrictly quantum mechanical 2 . Time dependent
Ž .Schrodinger equation TDSE is applied to describe¨

the TEAS. The atomic beam is modelled by a wave-
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packet and the solid surface is characterised by an
appropriate interaction potential. Solving the pre-
scribed TDSE the wave-packet at the detector region
provides the intensity distribution as the square of
the absolute value of the final state. Clear-cut diffrac-
tion peaks are visible when the atomic beam is
monochromatic enough and the surface is periodic.

w xThe concept of the transfer width 3 means the size
on the solid surface from that the experimental setup
is able to ensure information. Transfer width depends
on the energy spread of the atomic beam, the angular
spread of the source and of the detector, as well as
the spread of the surface impurity. When the transfer
width is greater than the typical period length of the
surface then clear-cut diffraction peaks can be seen.
In this paper the resolution of TEAS is discussed in
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the framework of a TDSE based physical model on
Ž .the He–W 112 system.

2. The physical model

A time dependent realistic model that has been
chosen characterises the neutral particle–solid sur-
face scattering quantum mechanically. The main
components are the following: the Gaussian wave-
packet to describe the incoming particle beam and
the interaction potential without restriction of the
periodicity and of the time independence. Basically
quantum mechanics is able to account for the physi-
cal processes of TEAS. In certain conditions—e.g.,
the probe particles are heavy atoms—semiclassical

w xmodel approach is appropriate 2 . The time depen-
dent Schrodinger equation has been applied that¨
corresponds to an initial value problem. The incom-

ing atomic beam is described by a plane wave in
standard models. The plane wave is an interpretation
of an absolutely monoenergetic atomic beam, which
has no spread of velocity and of energy. Hard corru-
gated wall model and the closed couple models are
the most popular within the frame of the plane wave
atomic beam. However, as is known the supersonic

Žatomic beams have narrow FWHM Full Width Half
.Maximum in the velocity space, because the veloc-

ity of the atomic beam may reach a few 10-fold of
the local sound velocity. The relative velocity spread

² :is defined by DÕr Õ , where DÕ is the velocity
² :spread and Õ is the mean value of the velocity.

The relative velocity spread of the supersonic beam
is usually about a few percent. Wide FWHM leads to
low resolution of the diffraction order. The plane
wave corresponds to the correct mean value of the

Ž .velocity, but an incorrect zero spread of the veloc-
ity distribution of the atomic beam. The Gaussian

Ž . Ž .Fig. 1. Probability density functions PDF of He–W 112 scattering propagation in the momentum space. P and P are the momentum inx z
Ž . Ž . Ž . Ž .direction x and z, respectively. Atomic units are used. A PDF is at the detector region initial state . B and C PDF propagates in the

Ž . Ž .interaction region. D PDF is at the detector region final state .
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wave packet provides proper mean velocity and ve-
locity spread, but it does not mean correct velocity
distribution. The Gaussian wave-packet can be con-
sidered as a description of an ensemble of neutral
atoms with minimised uncertainty in real and mo-
mentum space. A more realistic wave-packet can be
constructed from the velocity distribution of atomic

w x Žbeam that exits the skimmer 4 it will be published
.later . What does the initial wave packet describe? It

describes the collective behaviour of particles of the
atomic beam. The particles of the atomic beam do
not interact with each other, but they have a special
distribution of the velocity and the energy. The
Gaussian wave packet characterises the atomic beam
as a special quantum ensemble of the independent
particles. The wave packet gives exactly a ‘collec-
tive’ one particle system. 2D Gaussian wave-packet

has been chosen as an initial wave function since
Ž .W 112 has approximately one-dimensional surface

corrugation:

2 2C x , z , ts0 sC exp y xyx r2sŽ . Ž .Ž 0 1

2 2y zyz r2s exp ikrŽ . Ž ..0 3

1Ž .

Ž .where C is the wave function, x, z are Cartesian
co-ordinates, t is the time, C is the normalisation

Ž .constant, x , z is the average position at ts0, s0 0

is the standard deviation of the space co-ordinate, ‘i’
is the complex unit, k is the wave number vector
and r is the position vector. For describing the

Ž . Ž .Fig. 2. Probability density functions PDF in the case of different relative velocity spreads RVS of initial wave function. P and P arex z
Ž . Ž .the momentum in direction x and z, respectively. Atomic units are used. A RVS is 0 and 5% in direction x and z, respectively. B RVS

Ž . Ž .is 5% in both directions. C RVS is 13% in both directions. D RVS is 80% in both directions.
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interaction, the Lennard-Jones–Devonshire type po-
w xtential has been chosen 5 :

2p
V x , z sDexp y2a z 1y2b cos x ,Ž . Ž . ½ 5ž /a

2Ž .
where D is the energy constant, a is the repulsive
constant, b is the corrugation constant and ‘a’ is the
lattice constant.

3. Numerical method

Let us consider the time dependent Schrodinger¨
Ž .EC r , t Ž .equation: i" sHC r, t , where " is the Planck
E t

constant divided by 2p and H is the Hamiltonian. A
propagation scheme and a Hamiltonian operation
have to be applied. When splitting Hamilton operator
for two parts, for kinetic energy operator A and

potential energy operator B, we can write the exact
Ž . w Žformal solution: C r, t q D t s exp yiD t A q

. x Ž .B r" C r, t , in the case of time independent
potential. The solution of TDSE demands propaga-
tion scheme in every time step and requires a method
that determines the effect of Hamilton operator for
the wave function. We chose an efficient splitting
operator method with third-order accurate formula in

w x Ž .time 6–9 and the Fast Fourier transformation FFT
has been applied to calculate HC in every time step
w x10 .

4. Results

The standard deviation of the incoming wave-
packet and the period of the surface are changed and
the diffraction pattern is computed and visualised.
The main data of the computations are the following

Ž .Fig. 3. Probability density functions PDF in the case of different lattice constants. P and P are the momentum in direction x and z,x z
Ž . Ž . Ž .respectively. The relative velocity spread of initial wave function is 5% in both directions. A Lattice constant is 5.18 a.u. . B Lattice

Ž . Ž . Ž . Ž . Ž .constants is 10 a.u. . C Lattice constant is 13 a.u. . D Lattice constant is 20 a.u. .
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Ž Ž .. Ž .in atomic units a.u. : in Eq. 1 : k s0, k sy4,x z
Ž .in Eq. 2 : Ds0.00012, as0.582, bs0.2. The

base of the model calculations is the result in Ap-
pendix A: the energy spread is the inverse ratio to
the co-ordinate spread. Fig. 1 shows the different

Ž .stages of the probability density functions PDF of
Ž .the scattering in the momentum space when in a.u. :

's s`, s s 5 and as5.18. Fig. 1A and D1 3

correspond to the atomic source region and the de-
tector region, respectively. An almost monoenergetic
beam can be seen in Fig. 1A. One can see the
clear-cut diffraction peaks in Fig. 1D. Fig. 1B and C
show the propagation of PDF during the scattering.
If the transfer width is greater than the typical size of
the period of a surface; diffraction peaks appear.
Two types of model computations are executed. First
the period of the surface is constant and the energy
spread of the beam is changed. This case is shown in
Fig. 2. In the order of A, B, C and D the monochro-
maticity of the atomic beam is decreased. The rela-
tive velocity spread of initial wave function has been
determined by the help of Heisenberg inequality. In
Fig. 2A and B there are narrow diffraction peaks.
These correspond to the supersonic atomic source.
There are greater FWHMs of diffraction peaks in
Fig. 2C. Fig. 2D does not show a structured intensity
distribution. The transfer width is less than the pe-

Ž .riod of the surface. In second case see Fig. 3 the
period of the surface is changed and the energy
spread of the beam is constant. In Fig. 3A, the peaks
are well defined. The peaks of the intensity distribu-
tion disappear when the lattice constant of the sur-
face is increased. The diffraction peaks overlap each
other in Fig. 3B and C. The resolution is abruptly
decreased as the lattice constant is increased. In Fig.
3D there is trace of only the specular peak. The
result is a narrower peak than in Fig. 3C.

The above results support the idea that the trans-
fer width have to be significantly greater than the
surface period. Otherwise, the resolution of the ex-
periment is not fine enough to determine the exact
surface structure.

Appendix A

Let us investigate the relationship between the
spread of co-ordinate x and kinetic energy. Let the

Ž .normalised wave function be equal to: C x s
1 22 y Ž ² :. ixy x4w Ž . x ² :2p D x exp y q p x , where x is

"
2Ž .4 D x

the space co-ordinate, p is the momentum co-
²:ordinate, and D denotes average and spread,

respectively. The wave function is in the asymptotic
Ž .region at the atomic beam source —outside of the

interaction region—where the Hamiltonian contains
only kinetic energy operator. Based on operator form
of the Heisenberg inequality:

`1
) w xD xD EG C x , H C d xH

2 y`

2 <² : <`" EC p "
)s C d x s ,H

2m E x 2my`

where m is the particle mass, and E is the energy.
One can see the energy spread is inversely propor-
tional to the co-ordinate x spread.
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