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Thermal energy atomic scattering on solid surfaces (TEAS) is a useful experimental method to obtain information

about the structure, disorders and phonon-spectra of the solid surface. The probe particles (usually He atoms) could

spend relatively long time near the solid surface at the interaction region. Dynamics of these interaction processes

can not be investigated directly at present. However, an appropriate physical model of the interaction fitted to the

intensity distribution of the scattering may be suitable to investigate theoretically the interaction processes by

computer simulation. The present work emphasises this computer simulation method (CSM). For an actual CSM an

appropriate experimental method at the detector region (TEAS) is required. Moreover a theoretical model for the

TEAS (e.g. a one particle quantum mechanical wave packet model governed by the time dependent Schrödinger

equation (TDSE)) and a numerical method for solving the TDSE are necessary.

The state functions of the consecutive time steps provide enough information as an animation to describe the

dynamics of the interaction processes. The animation means subsequent snapshots of e.g. probability density function

(PDF) in rapid succession. The sequence of these snapshots provides a movie of the PDF time evolution.

Applications, physical models, numerical solution procedures and simulation techniques of time dependent wave

packet method (TDWP) are overviewed in present contribution, especially for the case of TEAS and molecular beam

scattering (MBS). Several relevant applications of TDWP method - in the case of TEAS - are discussed (scattering

on ordered, stepped and adsorbed surfaces, intensity distribution as a function of transfer width, resonant adsorption

and trapping, classical and quantum chaos, scattering from vibrating surface). Preliminary result of quantum chaos of

TEAS is presented first. Theoretical and computational background (TDWP and coupled channel method (CC)) as

well as applications (diffraction probability, sticking probability, dissociative adsorption, steering effect, inelastic

channels) of six dimensional molecule/surface dynamics calculations are shown.
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1. Introduction

Thermal energy atomic scattering on solid surfaces (TEAS) is an efficient method to explore the surface topology,

phonon spectra, surface disorders and the probe particle - solid surface interaction. Molecular beam scattering (MBS)

is suitable to explore the molecule - solid surface reactions. TEAS and MBS usually demand quantum mechanical

model to describe the physical phenomena. Classical and semi-classical models are also applied in the literature to

characterise TEAS and MBS. Since, the interaction of the atom (e.g. He) – solid surface system changes abruptly

near the classical turning point the classical trajectories are washed out. This fact supports the application of an

appropriate quantum mechanical model. The probe particles of larger mass and higher energy bring about weaker

quantum effect and the semi-classical and classical models come to the fore.

The traditional quantum mechanical models of TEAS suppose periodical solid surfaces. A successful and simple

quantum mechanical model, the so-called hard corrugated wall model (HCW) was developed by García [1]. The

probe particle interaction potential is zero above the surface but infinite at the corrugated surface. The state function

at the solid surface is equal to zero due to the infinite potential wall. According to this assumption the solution of a

complex linear system of equations will lead to the diffraction pattern at the detector region.

 García’s method has been improved by Varga et al. and Stoll et al [2-4]. The convergence and the stability have also

been improved. The symmetry of the solid surface has been considered [5], too, that led to an efficient inverse

scattering algorithm [6-7]. An integral equation solution method has been introduced by Salanon and Armand [8].

The soft corrugated wall model was the next quantum mechanical model. Executing the numerical solution, the time

independent Schrödinger equation was applied to a series of reciprocal lattices of the solid surfaces. This method

provided a system of close-coupled differential equations. Its solution gives the scattering amplitude (CCGM method

[9]). In the case of smooth surfaces (e.g. certain metal surfaces) a perturbation theory – the so-called distorted Born

approximation - is also an efficient method [10]. The details and further references of TEAS theory and experiments

can be found in [11-12].

A real surface contains different disorders, e.g. adatoms, vacancies, steps. The surface disorders deform the perfect

periodicity. This fact hinders the application of the above mentioned traditional methods. The wave packet method is

appropriate to eliminate this problem. In the framework of the time dependent wave packet method (TDWP) the

atomic/molecule beam is described as an ensemble of independent particles represented by appropriate Gaussian

wave packet. The wave packet velocity and spread ensure the right average beam energy and the monochromaticity,

respectively. The surface might be disordered because the wave packet time propagation is governed by time

dependent Schrödinger equation (TDSE) and the surface periodicity is not exploited in the numerical solution. The

physical quantities can be computed from the state function. (See details in the Appendix.) It is a relevant property of

TDWP method that the time evolution of the physical phenomena is received by the wave packet propagation. As a

result of that, during the process the state of the atomic beam is known beyond the detector region, too. By the

TDWP method one can also calculate the dynamics of the interaction region near the classical turning point where

the measurement of the atomic beam state is impossible nowadays.
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Section 2 reviews some research areas of the TDWP method. The numerical tools for the TDWP method are

discussed in section 3. In the subsequent section the computer animation as a computer simulation method is

introduced. The TDWP method - in the case of TEAS and MBS - is described in section 5 and in section 6,

respectively, with several applications. The conclusions are shown in section 7.

2. Recent applications and  development of TDWP method

It is important to mention the details of the different applications are not treated thoroughly in this section, the reader

is referred to the references.

Recently TDWP has been used for the description of reactive scattering, to calculate the microcanonical cumulative

reaction probability and probabilities of molecular transitions in time dependent fields, or to decouple reactant and

product parts of the wave function in state to state reactive scattering calculations. An accurate time dependent wave

packet calculation for the O(D)+DCl reaction is carried out employing a potential energy surface [13]. Apparent

differences are found in the energy-dependence of reaction probability and the magnitude of rate constants between

the O(D)+DCl reaction and its isotopic O(D)+HCl reaction [14]. These differences are attributed mainly to kinematic

effect. Classical and quantum dynamics computations on the collinear potential energy surface for the reaction of Li

with 2H  have been executed by Clarke and co-workers [15]. The specific features of the potential are analysed for

some indicative configurations and classical trajectory calculations are carried out for a special collinear

arrangement. In the case of collinear arrangement the quantum time dependent wave packet calculations have also

been performed and the two sets of results are found to be in rather good accord with each other. C. Zhang and co-

workers [16] applied time dependent quantum wave packet calculation for the HD+CN reaction. That has been

carried out on a new potential energy surface with the potential averaged five dimensional model. Discrete variable

representations for radial co-ordinate and a renormalized angular quadrature scheme are applied in the wave packet

propagation in order to save computer memory. Domenico and co-workers [17] presented a time dependent wave

packet approach to compute the reaction and collision-induced dissociation probabilities for 22 HH + . It has been

found that the method provides more accurate results than a time independent hyperspherical treatment. The time

dependent quantum wave packet method has been applied by C. Zhang and co-workers [18] to study the dynamics of

ion molecule reaction of 2HN ++  on special potential energy surface.

Atomic phenomena in bichromatic laser fields can be described by wave packet method as the atomic electron is

modelled by wave packet [19]. The computation demands the solution of the one- and three-dimensional TDSE.

Ferrero and Robicheaux [20] presented a theory for the scattering of a short electron pulse from a molecular wave

packet. They investigated the transition between two electronic states and showed how transition probabilities as a

function of internal nuclear positions can be obtained. Pulsed electron beam can also be used to control the transition

probabilities to different electronic levels by direct numerical solution of TDSE.

Nuclear wave packets are prepared by a chirped femtosecond laser pulse depending on the chirp parameter, exhibit

different vibrational dynamics [21]. Using the potassium dimer it can be shown that the time-resolved photoelectron
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spectroscopy is able to map the characteristics of the nuclear probability density and to distinguish densities obtained

from excitations using differently chirped pulses. The numerical calculations provide the information about the

uncertainties of wave packets, which can be directly obtained from the spectra.

3D wave packet calculations on the 3O  molecule have been performed the case, when the total angular momentum

equals to zero  [22]. The split operator propagator and the fast Fourier transform method in hyperspherical co-

ordinates are used in order to follow the quantum dynamics of photodissociation. The effect of the finite lifetime of

the excited state has been studied, in order to explain the disagreement between the theoretical calculations and

experimental data.

Time dependent photodissociation resonances are investigated in the case of collinear 2CO system using the wave

packet method [23]. The excited- and ground-state wave packet behaviour caused by frequency-chirping of a

femtosecond laser pulse in 2H - photodissociation has been investigated using a time dependent method [24].

Control over wave packet processes is the foundation of laser control of chemical reaction dynamics. The critical

stage in a chemical reaction occurs within 1210− s. After femtosecond laser technology had emerged it was possible

to manipulate and control molecular processes in this key stage. The most important task is to solve the coupled time

dependent Schrödinger equations.

The photoabsorption spectra of the molecules HI and DI are computed using ab initio potential curves and transition

dipole moments [25]. Partial absorption cross-sections and an excited spin-orbit state of iodine are calculated using

the time dependent wave packet formalism as a function of the excitation energy. Good agreement with experimental

data is obtained. The wave functions and potentials are represented on a set of equally spaced grid points and the

Schrödinger equation is solved using the split-operator method.

Mahapatra and co-workers [26] investigated the nonadiabatic wave packet dynamics on the coupled electronic states

of 2NO  based on new ab initio potential energy surfaces. The elements of the vibronic Hamiltonian are weakly

varying function of the nuclear co-ordinates and the kinetic energy operator can be taken as diagonal.

Sweeney and De Vries [27] applied the split operator method solution of TDSE to two-dimensional Rutherford

scattering and the wave function was visualised as a function of time.

De Raedt [28-30] focused on simulating the quantum mechanical motion of electrons in nano-scale devices.

Supplemented by computer animation techniques the simulation provides a clear insight into the physical behaviour.

Aharonov-Bohm effect has been simulated by wave packet method, too.

Andersson and Stenholm [31] investigated the cooling and trapping techniques for atoms allowing the fabrication of

genuinely microscopic quantum wires and dots for individual particles. The physical feature of a structure was

discussed and it was illustrated with wave packet simulations.

Márk and his co-workers [32-35] executed thorough computer simulation of  scanning tunneling microscopy (STM)

experiments to Carbon nanotubes. Three dimensional wave packet method has been applied to explore the dynamics

of the electron tunneling between the realistic STM tip and the Carbon nanotubes. The time propagation of the

probability density function is rendered in the nanotube as a computer animation and as the electron dwell time

distribution. The simulation results were compared to the experimental ones, too.
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Further fruitful applications of TDWP method are the investigation of atom/molecule solid surface interactions by

TEAS and MBS. Details can be seen in section 5 and 6, respectively.

3. Numerical solution methods for TDWP method

If the quantum system is small and if it contains dissociative or tunneling co-ordinates the grid method is very

convenient to use direct procedure which avoids state expansion. Nowadays six-dimensional computations can be

executed in several cases. Of course the degree of freedom depends on the physical situation that can be handled

without super computer. For atom/molecule - solid surface scattering and interaction, grid methods can be extremely

useful. The methods are accurate, suitable for investigation of complex systems as is shown in section 2. The

numerical procedure of the solution of Schrödinger equation can be divided into the following steps:

(a) An appropriate initial wave function has to be chosen. Average energy and energy spread of the atomic beam

must be considered. It is a good idea to choose a Gaussian wave packet for determining the intensity distribution

of TEAS. However, the composition of the initial wave packet is a crucial question that depends on the physical

phenomena, which we want to investigate. For example, if the dynamics of diatomic molecule scattering has to

be analyzed, the initial wave function should be a sum of the incoming plane waves at the detector region where

the particle moves as a free one. This is why a plane wave should contain the product of the following functions:

a plane wave perpendicular to the surface, a function describing parallel translational motion, a vibrational wave

function for molecule in the appropriate rovibrational state and spherical harmonic function of the appropriate

rotational state. This ansatz provides the possibility to describe rovibrational and rotational probabilities of

different states, which are identified by certain quantum numbers. Namely, a right initial wave function should

span the physical space of the processes. This type of initial wave function construction speeds up the

convergence of the numerical procedure, as well as decreases the computational effort.

(b) Boundary condition has to be chosen. Large enough subspace has to be chosen in order to the wave function

should become zero at boundary points under the whole physical process. If it is not realizable  - e.g. because of

the computer memory is out of – absorbing [60][62] or cutting techniques [93][148] for the wave function are

required.

(c) A method has to be applied to construct the Hamilton operator. It can be calculated by finite difference method,

finite element method and pseudo spectral method. The fast Fourier transformation (FFT) is an efficient pseudo

spectral algorithm [36-39]. FFT demands periodical boundary condition, but the convergence speed is

exponential in the number of terms. Unfortunately, the convergence of the finite difference method is only

polynomial. The finite element method has good convergence characteristics and the boundary conditions can be

built easily, however the computer code generation of the mesh is complicated [40-41].

(d) One has to choose a time propagation approach. The global operator scheme - e.g. Chebyshev scheme -

determines the time propagator for a longer time interval [42-43]. These methods can be extremely accurate,

however it is not recommended to time dependent interaction energy problems and for wave functions which

occupy very small spectral range in relation to the spectral range of the grid. Chebysev scheme does not hold the
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norm, does not conserve the energy and it is unstable for grid density. Finite difference scheme of the time

propagator – the second order difference scheme (SOD) is the simplest – is based on Taylor series [44]. The

SOD scheme holds the norm, conserves the energy, unstable for the grid density and time step. Split operator

method (SPO) divides into two different parts the Hamiltonian [38][45-49]. First part is the kinetic energy and

the second part is the interaction energy. The approximative formula contains pure kinetic energy and interaction

energy terms. These non-mixed terms can be calculated efficiently as an algebraic operation in the momentum

space (kinetic energy) and in the real space (interaction energy). Between the momentum space and the real

space a vice-versa transformation is required (e.g. FFT). The short iterative Lánczos propagation (SIL) is based

on generating a set of orthogonal polinomials lying within the subspace, which represents a finite polynomial

approximation to the operator [50-52]. SIL holds the norm and conserves the energy, it is stable for grid density.

(e) The error indication is a relevant task. The computation accuracy can be controlled by the time symmetry of

TDSE in the case of all methods. When one goes back to the time one should get back the starting wave

function. The difference between the original initial wave function and the computed one can be measured by

any norm - e.g. Eucledian norm – especially focusing on the phase error. Based on the above description of the

different time propagation methods, other indicators can also be found. Chebysev method can be controlled by

the norm of the wave function and the particle average energy. Since SOD method holds the unity of the wave

function and conserves the energy, these physical quantities are not suitable to indicate the computation

accuracy. However, SOD method is unstable for grid density. If the grid density is not large enough the method

is divergent. Because the SPO method does not conserves the energy, the average energy as a function of time is

a good indicator.

(f) The wave function has to be analysed to get the time propagation of the physical quantities (see appendix).

Further details of the numerical solution can be found in the following references: Gerber and co-workers [53], R.

Kosloff [54], Billing [55], Leforester and co-workers [56] and Thaller [57].

3.1 Further development for numerical solution of TDWP method

Let us show some results that contain new and efficient numerical procedures. The predissociation dynamics of the

vibrational eigenstates of hydrogen bromide ions in the first excited electronic states - that occurs via coupling to

three repulsive states - has been investigated by direct solution of four coupled 1D time dependent Schrödinger

equations [58]. The analysis shows multi-exponential decay for most of the predissociating vibrational states. The

lifetime of these states decreases by several orders of magnitude. The split-operator method [38] as well as the

integral equation method [59] have been used for determining the propagation of the wave functions. The absorbing

boundary [60] is used to prevent the artificial reflection of the wave functions at the edge of the grid.

Dattoli and Mancho [61] exploited the formal properties of the evolution operator of Fokker-Planck and Schrödinger

equations. Evolution operator is approximated with special forms of Laguerre polynomials and Laguerre-based

functions. An advantage offered by the split operator method is that there is no explicit requirement of evaluating the

Fourier transform of the initial function. The main disadvantage is that an iteration procedure is unavoidable.
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Palao and Muga [62] developed a simple construction of absorbing potentials in the case of TDSE. Complex

absorbing potentials are important auxiliary tools in TDWP method. The traditional role of the absorbing potentials is

to elude too much computational efforts by avoiding spurious reflections at the edges of the finite „box” where the

wave packet is enclosed. If periodic boundary conditions are imposed they also prevent the „transmission” to the

other side of the box. The procedure of absorbing potential is based on adding a series of equal length complex

square barriers and optimizing their real and imaginary parts to achieve maximum absorption at a selected set of

momenta. The absorption widths obtained are better than other known functional forms for the important low

momentum region. Summarily, Palao and Muga have proposed a method to construct optimised absorbing potentials

by combining complex square barriers.

Jiang and co-workers [63] proposed two new propagation schemes of the quantum time dependent self-consistent

field equations from a different point of view. If the state of the system under discussion is represented by a multiple-

element vector wave function, a time independent quasi-Hamilton operator for the total system can be defined.

Nest and co-workers [64] applied the mapped Fourier method for scattering problems. The new scheme uses a non-

equidistant grid point set. The key idea is to construct an adaptive grid, with a high grid-point density in regions

where large momenta are expected. Numerical results are presented for scattering of Ar atomic wave packets from a

Cu model surface.

Mikhailova and Pupyshev [65] have improved the accuracy of the symmetric expansions for the TDSE evolution

operator up to the fifth order in time. This formula was applied to MBS. TEAS may be a further application of it.

Gollub and Richards [66] implemented a TDSE solver on Parallel Computers by space-splitting method [67] without

spectral computations. The second order approximation of Laplacian resulted special tridiagonal matrices and their

exponential functions have been computed to formulate for parallel computers efficiently.

A pseudospectral method for solving the time dependent Schrödinger equation in spherical co-ordinates is presented

by Corey and Lemoine [68]. The translational kinetic energy operator is evaluated with Fourier transform. The

angular dependence of the wave function is expanded on a two-dimensional grid in co-ordinate space and the angular

part of the Laplace operator is evaluated by a Gauss-Legendre-Fourier transform between the co-ordinate and the

conjugate angular momentum representation. Calculation was performed for 2H molecule scattering on a frozen

periodic surface.

Lemoine [69] published a numerical algorithm (the so-called discrete Bessel transform) and a FORTRAN 77

program of optimal cylindrical and spherical Bessel transforms satisfying bound state boundary conditions. The

illustrative program applies the discrete Bessel transform to the eigenvalue calculation for two- and three-

dimensional harmonic oscillator.

4. Computer animation

To exploit the computer simulation methods (CSM) computer animation of the physical quantities can be a useful

tool. The animation means consecutive snapshots of the physical quantity as the time elapses. The manner of the
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animation depends on the space dimension of the physical problem. A 2D problem can be rendered as a series of 3D

snapshots.  A 3D problem would demand 4D full graphical demonstration that is impossible. However, one can

render snapshots of the 2D slices (window technique) in the space or snapshots of the isosurfaces (isosurface

technique). Window technique might apply 2D rendering using a colour scale to show the distribution of the physical

quantity or 3D rendering of 2D surfaces. Isosurface technique means that one can find the points in the 3D space

where the physical quantities are equival to a given value. In the case of the isosurface technique relevant question is

how to choose the isosurface value. For window technique and 3D snapshots some applications can be found in [70],

viz., TEAS from 2D and 3D corrugated surfaces near the interaction and at the detector region considering the

evolution of diffraction peaks and adsorption. Some picturesque computer animations can be looked at [71].

As researches show, the interactivity in human-computer connection is important [72]. Advancements in computer

technology have allowed the development of human-appearing.  Increased richness and anthropomorphism in

interface design lead to computers becoming more influential during for making decision.

The animation techniques might become efficient in the case of inverse procedures, too. Murray-Smith analyses the

problem of inverse techniques for dynamic simulation models [73]. These techniques allow computation of the time

history of „inputs” needed to achieve a specified time history for a selected set of „outputs”. In general terms, the

available methods of inverse simulation may be numerical differentiation or iterative techniques. The iterative

techniques are based upon numerical integration processes.

5. Atom scattering on surfaces

A relevant question is whether purely quantum mechanical, semi-classical or classical models have to be treated and

the probe particle-surface coupling is considered or not. The type of the model depends on the physical processes and

applications. In many cases it is enough to apply a frozen surface model when the coupling between the probe

particle and the solid surface is not of primary interest. This situation might occur investigating surface structure,

surface disorders and adsorption dynamics. (See details about molecule dynamics in section 6). However, if one

would like to determine or explore the solid surface dynamics, the coupling of the probe atom-vibrating surface

becomes relevant. In general, if the probe particle energy (or mass) is high enough classical or semiclassical models

are acceptable. It is supported by the following computations: A semiclassical rainbow analysis of He-Cu(115) and

Cu(117) is presented in [74]. This is based on a semiclassical approximation to S-matrix summing over all

appropriate trajectories. The method of quantum trajectories proposed by de Broglie and Bohm is applied to study of

atom diffraction on surfaces [75]. There is excellent agreement with results calculated by standard S matrix methods

of scattering theory. De Broglie and Bohm quantum theory was solved numerically by the Heller's [76] method.

Heller's approach is based on appropriate wave packet propagation.

The transition to the classical limit in atom-surface diffraction is studied using the de Broglie-Bohm causal

formalism [77]. In order to achieve this limit, the mass of the probe particles have been increased in the case of

scattering on Cu(110) surface. Quantum trajectories mimicked the classical intensity distribution.
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5.1 Details to computations

The time dependent Schrödinger equation (TDSE) was solved numerically by Varga [78] using the seven split

operator time step formula, that is more efficient than the standard three split operator one. This numerical solution

procedure can handle the time dependent Hamilton operator, when the interaction energy and kinetic energy

operators can be separated. The TDSE describes the atomic beam as a quantum ensemble of the independent

particles. Let us consider the 3D time dependent Schrödinger equation:
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particle/surface interaction energy. The interaction energy depends on the particle/surface system and it can be
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Ψ is the wave function,  t is the time, C is the normalisation constant, (x y z
0 0 0
, , ) is the  average position at t=0, σ is

the standard deviation, „i” is the imaginary unit, k is the wave number vector and r is the position vector.  The y co-

ordinate is omitted in two-dimensional calculations, namely the solid surface is only corrugated in one-dimension.

5.2 He diffraction and transfer width

Stern, Estermann and Frish demonstrated the wave theory of probe particles, when first they observed diffraction

patterns of He atom and 2H  scattering  from LiF and NaCl surfaces [79-81]. Varga made a computer simulation of

the diffraction pattern in the case of He-W(112) model surface scattering and analyzed the transfer width as a

function of energy spread of incoming atomic beam and of lattice constant [82]. To describe the interaction potential

of He-W(112), a 1D corrugated Lennard-Jones-Devonshire type potential has been chosen:
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D is the energy constant, α is the repulsive constant, β is the corrugation constant and „a” is the lattice constant. The

standard deviation of the incoming wave packet and the period of the surface are changed and the diffraction pattern

is computed and visualised. The main data of the 2D computations are the following (in atomic units (a.u.)): in eq.

(2): k kx z= = −0 4,  , in eq. (3): D=0.00012, α=0.582, β=0.2. The ground of the model calculations is the result that

the energy spread is the inverse ratio to the co-ordinate spread [82]. Figure 1 shows the different stages of the
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probability density functions (PDF) of the scattering in the momentum space when (in a.u.): 5 ,5 31 == σσ

and a=5.18. Figure 1A and figure 1I correspond to the atomic source region and the detector region, respectively.

Approximately monoenergetic beam can be seen in figure 1A and clear-cut diffraction peaks are rendered in figure

1I. PDF of the interaction process is demonstrated by Figures 1B-H as a function of time.

If the transfer width is greater than the typical size of the surface period diffraction peaks are appeared. Two types of

model computations are executed to analyse the connection between the transfer width and the diffraction pattern.

Figure 2 shows the case when the period of the surface is constant and the energy spread of the beam is changed,

namely, in the order of A, B, C and D the monochromaticity of the atomic beam is decreased. The relative velocity

spread of initial wave function has been determined by Heisenberg inequality. In figure 2A and 2B there are narrow

diffraction pattern, which correspond to the supersonic atomic source. There are greater FWHMs of diffraction peaks

in figure 2C. Figure 2D does not show a structured intensity distribution because the transfer width is less than the

period of the surface.

Let us see Figure 3. The period of the surface is changed and the energy spread of the beam is constant. In figure 3A

the diffraction peaks are well defined and clear-cut peaks of the intensity distribution disappear as the lattice constant

of the surface is increased significantly. The diffraction peaks overlap each other in figure 3B and 3C. The resolution

of TEAS is abruptly decreased as the lattice constant is increased. In figure 3D only the specular peak can be seen

and it is a narrower peak than in figure 3C.

The above results support the idea that the transfer width has to be significantly greater than the surface period.

Otherwise, the resolution of the experiment is not fine enough to determine the exact surface structure.

5.3 He diffraction from clean and stepped surface

The He scattering from clean and stepped surface was investigated in the case of a general model surface and

Rh(311) surface by Varga [78]. The irregularly stepped surface deforms the intensity distribution compared to the

periodic surface. The deformation characterizes the surface topography. The systematic classification of model

computations might provide connection to the surface structure and the intensity distribution of TEAS. Now, let us

see two 3D model calculations and animations of He scattering.

First of all He scattering on Rh(311) is considered. A corrugated Morse interaction potential describes the Rh(311)

surface:

V(R,z)=D [ exp(-2α(z-ζ(R)-disorder(x,y)))-2exp(-α(z-ζ(R)-disorder(x,y))) ],                                 (4)

where ζ(R) is the corrugation function and the position vector R is parallel to the surface [83]. Approximately 63

meV He beam scattered on regularly stepped Rh(311) surfaces [84]. As is known the ordered Rh(311) surface is a

regularly stepped surface. Input data (a.u.) in eq. (2) are:  ,17z ,84.16y,86.9 000 ≈==x  σ σ σ1 = = =2 3 5,
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123.4 ,123.4,0 −=== zyx kkk . Input data in eq. (4) are: D=7.74 meV, α=1.01 1/Å, disorder(x,y)=0 and the

parameters of the corrugation function have been chosen from the literature [83]. The corrugation parameters have

been fitted to the experimental results by the hard corrugated wall model. Obviously, eq. (4) does not provide the

effective corrugation function. However, it is a good approach of the interaction potential in first order. The incident

angle of He beam corresponds to 45°. The snapshots of PDF in the real space are rendered as a function of time with

isosurface technique. The isosurface value is approximately 5% to the maximum of PDF at the source region. An

isosurface of the interaction potential is also shown to imagine the penetration of the wave packet into the very top

layer of the surface. At the initial state the isosurface is a sphere (Figure 4A) because of the input data but at the

detector region a set of diffraction states is evolved containing separate domains (Figure 4I). The intermediate states

inform you on the scattering dynamics. The interaction is strong in a small region near the surface.

Second example describes the interaction process near the surface – in the quantum mechanical region - by window

technique applying a clean model surface. Lennard-Jones-Devonshire type interaction potential has been chosen

[78]:
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where D is the energy constant, α is the repulsive constant, β is the corrugation constant and „a” is the lattice

constant, disorder(x,y) ensures the surface disorder.

A completely periodical solid surface was analysed in the case of approximately 30 meV He beam. (Input data (a.u.)

in eq. (2) are: x0 1813 16 67= = =y  z0 0. , . ,  σ σ σ1 = = =2 3 5,  k k kx y z= = = −0 4, , input data (a.u.) in

eq. (5) are: D=0.00012, α=0.582, β=0.2, a=5.18, disorder(x,y)=0) As is known the scattering process leads to

diffractive intensity distribution.  Relevant question is what happens near the surface in the quantum region. To

answer this problem parallel slices of the PDF of the scattered He atoms to the solid surface have been rendered as

the time propagated near the classical turning point. PDF can be obtained as a square of the absolute value of the

wave function, which wave function is calculated by TDWP method. In figure 5 one can see colour scale snapshots

of PDF in the momentum space as a function of time. First the wave packet is approaching to the surface, to the

window parallel to the surface, where we render the slices of the PDF. Figure 5A only shows small and dim spot.

The wave packet, however, is going to the surface and the window slice of PDF becomes larger and more

complicated. The bright spots correspond to the diffraction channel. In the interaction region the close channels are

also appeared, which evanesce during the scattering. E.g. in figure 5F and 5G one can see the two-dimensional

Brillouin zones in order of first, second and third relating to a square lattice. After the interaction, the wave packet

leaves behind the surface and the window slice becomes dim and empty again (Figure 5I).

Further effect is the step-edge orientation, which should be discussed by TDWP method. Helium atom scattering has

been applied to determine the step-edge orientation on a Rh(311) surface, whose close-packed rows are separated by

altern (100) and (111) microfacets [85]. Additional peaks were observed from the specular beam when the incident
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He beam was impinging on the microfacets on the (100) or (111) microfacets. The stepped surfaces structure can be

investigated by this effect.

An another new problem occurred exposing the He beam at grazing angle. Diffraction beams from the scattering of

He atoms from the Rh(311) surface were observed at scattering angles of up to grazing exit at 90° with respect to the

surface normal [86]. Under grazing exit conditions, a broad scattered signal appears which is interpreted as diffuse

scattering of the grazing diffraction beam arising from collisions with the low density step defects resulting from the

small miscut of the crystal. This experiment opens new possibilities for the characterization of surface defects with

diffraction techniques. However, in the "upstairs" and "downstairs" direction there is significant difference between

the intensity in (01) direction. This phenomenon is not explained by close coupling calculation but by Fraunhoffer

diffraction model. The TDWP method is able to determine which direction is uphill. TDWP method, however,

demands a long region parallel to the surface in the azimuth angle direction as well as absorbing boundary because of

the grazing-angle.

5.4 He scattering on adsorbed surfaces

TEAS is able to determine the surface topography exploiting the intensity distribution. The diffraction beam becomes

very clear-cut when the surface structure is periodic again. Exposing the surface top layer by adsorbate beam,

periodic super lattice could be developed as a function of adsorbate coverage rate and of the adsorbent structure. The

details of this topic are reviewed in [11]. However, let us see some experiments since these are necessary for the

further discussion and provide experimental results to the theoretical TDWP calculations.

The (311) surfaces of fcc materials are of special interest as they offer a large variety of differently co-ordinated

adsorption sites [87]. Rh(311) was achieved by He diffraction. Development of hydrogen phases on Rh(311) was

executed by hydrogen exposure. The sequence of the superstructures in order of exposure are the following: c(1x1)H,

c(1x3), p(1x1)H and p(1x1)H (REC).

The adsorption of oxygen on Rh(311) has been investigated by means of He scattering [88]. The formation of

ordered (2x1) and (1x3) structures was observed. The experimental results suggest that oxygen induces a surface

reconstruction in the (1x3) phase, whereby at least one of the three close-packed rows is missing and the oxygen

atoms fill resulting deep troughs.

The formation of ordered structures of hydrogen on Pd(311) has been investigated with low-temperature He beams

[89]. Before completion of a saturated c(1x1) phase, formation of three low-coverage (2x1) phases could be found.

Possible structural models for the reported phases has also been discussed [89].

The formation of ordered oxygen overlayers on Pd(311) as well as structures obtained after their reduction in

hydrogen have been studied by He scattering [90]. The presence of a pronounced rainbow pattern in the (1x2) in-

plane spectra shows unambiguously that its structure is of missing-row type. Possible structural models for different

phases are recommended.

Low energy vibrations of CO adsorbed on Ni(110) was investigated with high resolution He atom scattering

carefully [139].
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The above and other experiments were discussed in detail [11] but further investigation with TDWP method might

provide additional elaboration of intensity distribution, as it is seen below.

The helium atom scattering is suitable to characterise the correct orientation in the (1x1) CO commensurate

monolayer adsorbed on a single crystal NaCl(100) surface has been investigated [91]. The fully quantum mechanical

description is based on two potentials which exhibit a significant discrepancy according to whether the CO axis is

normal to the surface or inclined to about 40° approximately.  The computation resulted that the He diffraction is

suitable to determine structure of (1x1) CO phase. The TDWP method used to compute the diffraction spectra was

the same as in Lemoine's paper [92] apart from a special splitting algorithm [93] . The wave function of scattering is

expanded in terms of plane waves for the two-dimensional reciprocal space. In the case of off-normal He incidence

the diffractive scattering symmetry was exploited [92]. The computed intensity distributions of two different CO

phase positions show significant discrepancy. In the wave packet picture the trapped portion is slowly leaking out of

the interaction to the asymptotic region. Even if one finally turns the grid as the wave function spreads the

multidimensional computation may be too large. This problem can be resolved by complex absorbing potential or

splitting the outgoing packets into an interaction piece and an asymptotic piece [93] . This splitting procedure should

be repeated until the intensity of the wave function becomes negligible in the interaction region. Both the interaction

and asymptotic pieces have to be back-transformed to momentum space, either for the propagation step or for the

final asymptotic analyses.  The splitting operator method has to avoid the discontinuities.

A numerically exact TDWP quantum calculation of the He scattering from single CO adsorbates on Pt(111) has

shown that is based on a soft potential closely approximating hemisphere geometry [94]. The model calculations

showed good agreement with experimental angular distribution.

5.5 He resonant adsorption on Rh(311) surface

On the basis of TDWP method calculation and assuming an exponential decay law for the resonances, Hernandez

and co-workers [95] have computed the selective-adsorption resonances in the elastic scattering of He atoms from

the Cu(110) and Cu(117) surfaces.

Miret-Artés [96] proposed a systematic classification of the elementary processes within the close-coupling

formalism. The "term" elementary means that the entrance scattering channel directly leads to the formation of the

resonance without intermediate states and the single phonon approximation holds. Fourteen different cases are

discussed. There are also theoretically predicted and experimentally observed mechanisms. The multiphonon

contributions to the elastic diffracted intensities and resonance profiles are considered in [97] for scattering of He

atoms from surfaces Cu(110) and Cu(113).

Diffraction studies have been performed with He and Ne beams on clean Rh(311) and c(1x1)H phase [83]. Selective

adsorption of He on clean Rh(311) and c(1x1)H phase could be measured, allowing the determination of three and

four bound-state levels, respectively. These parameters were fitted to a two-parameter Morse potential.
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Let us investigate the resonant adsorption of He-Rh(311) system with TDWP method [111]. This system is the same

as it is in section 5.3 and the numerical procedure is similar to applied one.  In eq. (2) the main input parameters of

the He beam are (in a.u.): σ=√5, x0 =9.8644, y0 =12.681, z0 =11 and k=(kx = 0, ky = 30636. , kz = −21452. ),

k=3.74. The average energy of the He atom is: ≈26 meV. The incident angle is: �55=Θi . Sample points 32, 96 and

64 are chosen in the direction x, y and z, respectively. In Fig. 6A and 6B the PDFs are shown in the real and in the

momentum space, respectively as the wave packet is approaching the classical turning point ( a.u. 62.2>=< z ,

‘<>‘  stands for the average). PDF is equal to 
2),( trΨ . PDF is split into slices parallel to the solid surface since

PDF is a function of three variables in space. In this region the He-surface interaction is essential. One can see a very

important fact, for |k|>3.74 a.u. the probability significantly differs from zero. This corresponds to the bound states,

because the perpendicular motion is limited so a fraction of the He atoms have longer life time near the Rh(311)

surface. Fig. 6C and 6D show PDF after the scattering, beyond the interaction region in the real and in the

momentum space. One can also see in-plane and out-of-plane scattering. The component of the wave number vector

k parallel to the surface is shorter than 3.74 a.u. on the contrary when the He atom is near the top layer of the

Rh(311) surface.  The attractive part of the interaction potential leads to longer lifetime near the surface.

5.6 Classical and quantum chaos

Recently some classical and semiclassical calculations of atom scattering showed chaotic effects. Guantes at al. [98]

discovered classical chaos of the He scattering on Cu(117) relating to the right angle rainbow scattering. The

scattering phenomenon becomes extremely sensitive of the scattering parameter. This fact yields the fractal structure

of the curve of the He atom deflection angle - impact parameter [99].

Miret-Artés at al. showed that the diffraction condition for the scattering of atoms from surfaces leads to the

appearance of a distinct type of classical singularity [100]. It is also shown that the onset of classical trapping and

chaos is closely related to the bifurcation-order function around the surface points showing the rainbow effect. The

scattering of He atoms on stepped Cu(115) is discussed.

Guantes and his co-workers [101] investigated the phase diagrams (e.g. periodic orbits and homoclinic tangle) of He

atom scattering on Cu surface considering the chaotic scattering within the frame of the classical theory.

A classical picture of threshold resonances in classical chaotic-surface scattering is explored [102]. It is also

emphasized that these resonances are observable for highly corrugated surfaces or for smooth surfaces with incident

conditions where multiple scattering is important.

The semiclassical S-matrix theory is applied in the case of classically chaotic scattering [103]. According to the basic

assumption the direct and complex contributions to the S matrix can be computed independently. Only the

interference among trajectories corresponding to the same "icicle" is considered. If a chattering region (irregular
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curve) is expanded, a series of smooth subdomains – called "icicles" – can be found. This is equivalent to assume the

interferences between all trajectories in different icicles will cancel each other on average.

Hernández et. al. [104] investigated the time evolution of He scattering on Cu(110) by time dependent

autocorrelation function of a wave packet. Wave packet time propagation was determined by solving the TDSE using

a finite difference scheme. All the memory of the initial wave packet was rapidly lost. The same results were

received by a method of half-width analysis.

Classical models of scattering techniques often show chaotic behaviour. This fact induces the question of quantum

chaos. Intensities of low energy electron diffraction and photoelectron diffraction are analyzed from a statistical point

of view in [105]. To characterize chaotic wave functions Porter and Thomas advanced the hypothesis that wave

functions of a chaotic system should display a 2
νχ statistical probability distribution [106]. This hypothesis has been

rigorously justified by the supersymmetry formalism [107], and has been used as a convenient definition of quantum

chaos. This hypothesis at least can be thought as a necessary condition. Dyson [108] demonstrated that within the

random matrix theory [109] only three universal classes exist. Depending on whether the Hamilton operator is

constructed with real numbers, complex numbers or quaternions, v  is 1, 2 or 4 degrees of freedom, respectively.

A good understanding of wave functions is crucial in explaining open systems, namely the probe-target-probe setup

that is used in most scattering arrangements. In the case of quantum scattering phenomena ν degrees of freedom is 2,

because the wave functions are complex functions. The calculations by Andres and Vergés [105][110] proved that

the intensity distribution of the low-energy electron diffraction (LEED) and the photoelectron diffraction (PED) fit

quite well to the 2
2χ statistical distribution. The most complex models of LEED and PED fit to the 2

2χ statistical

distribution the best. These systems exhibit quantum chaos in the case of scattering on ordered surfaces, which is a

remarkable result.

5.6.1 Manifestation of Quantum Chaos in TEAS

Present author was inspired to investigate the quantum chaos of TEAS on the basis of section 5.6. Recently,  Balázs

at al. discovered chaotic effect of the three-dimensional He-Rh(311) sytem [111]. However, the searching for

quantum chaos was unsuccessful. The dwell time of the He atom - in a chosen volume - was  the physical quantity

that should have shown stochastic behaviour. Now, we analyzed the diffraction pattern of He-W(112) model surface

[82] at the detector region. The PDF has been determined by TDWP method for the absolutely same system that was

shown in section 5.2 and in Figure 1. Figure 7 shows a quite good agreement between the calculated scattering

cumulative probability function of the PDF and the 2
2χ  law. This preliminary result manifests the quantum chaos of

He-W(112) model surface scattering albeit that a well ordered system was dissected. This corresponds to the

quantum chaotic behaviour of LEED and PED. The elaboration of the quantum chaos in case of TEAS will be

published elsewhere.
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5.7 Scattering from vibrating surfaces

A very detailed review can be found in [12] devoted to single- and multiphonon processes of TEAS. The projectile

particle colliding with a surface may exchange zero, one or more quanta with the phonon heat bath. Consequently

there is nonzero probability of elastic scattering; this circumstance demands scattering boundary conditions on

perturbing potential of phonon processes [112]. Under certain conditions the motion of probe particles and surface

vibrations can be treated by classical mechanics. This is likely to be the case for large mass of probe particle and

surface atoms and high projectile incident energy [113]. Several various semiclassical schemes and approximations

have been developed. For example the probe particle translational degrees of freedom are treated classically or

semiclassically (heavy probe particles) and surface vibrational degrees of freedom quantum mechanically. In another

case the light probe particle is treated within quantum mechanics and surface degrees of freedom classically. The

classical treatment of surface vibrations is usually described by the generalized Langevin equation [114]. A quantum

treatment of light atom-surface inelastic scattering proves indispensable under scattering conditions typical of TEAS

[115-116]. Standard quantum mechanical theory of scattering is well-established [117-118]. The applicability of the

previously mentioned approaches depends on the scattering regime (classical, semiclassical or quantum) in which the

experiments have been carried out. An unified theory of He scattering of thermal energy should contain the quantum

formalism, unitarity in the sum of all scattering probabilities, full surface vibrational dynamics, limit in the one-

phonon scattering regime and quantum treatment of multiphonon scattering in three dimensions. The scattering

spectrum approach model (SSA) wants to fulfil the conditions of unification [119]. Different developments can be

found in [120-123] - the calculations of Debye-Waller factors, Born approximations, or He energy transfer to

surfaces.

One can see how complicated is the question of the coupling between the probe particle and solid surface. The

advantage of TDWP is that the surface may contain arbitrary disorders and the atomic beam may be non-

monoenergetic. The disadvantage of TDWP is the limited number of the degree of freedom in consequence of high

computer effort. If one wants to exploit the quantum description of TDWP then three degrees of freedom are

occupied for translational motion of probe atom. A classical coupling can be provided with classical discussion of

solid surface vibration via the generalized Langevin equation [114]. The surface consists of two zones. In the first

zone there are the target atoms, which directly collide with probe atoms. The second zone contains the surface atoms,

which experiences the interaction with probe atom described via the so-called memory function. This model should

contain ordinary coupled differential equations of surface atoms. These equations are related to the time dependent

Schrödinger equation and vice versa. The coupling is attained via the interaction energy between the scattering atom

and the pair-wise surface potential. If the scattering atom does not influence the surface atoms; the approximation

corresponds to pure thermally vibrating system without energy change. This is the simple kinematic theory [70].

TDWP method with Langevin equation will be published elsewhere in details.
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6. Molecule scattering on solid surfaces

A fruitful application of TDWP method is the investigation of reactions at surfaces [124-125]. Understanding

reactions on surfaces plays an important role in heterogeneous catalysis, crystal growth determining the quality of

semiconductor devices; corrosion and lubrication, influencing the durability of mechanical systems; or hydrogen

storage in metals and so on. In the last decade the increase of the computer power and the development of ab initio

surface calculation led to the fully quantum mechanical dynamic calculation of scattering of diatomic molecules

(mainly 2H ) from solid surfaces. So-called ab initio dynamics calculations of reactions on surfaces usually require

three independent steps:

•  determination of ab initio potential energy surface (PES) by first-principle total-energy calculations,

•  a fit of the total energies to an analytical or numerical continuous representation which serves as an interpolation

between the actually calculated points,

•  a dynamical calculation on this representation of the ab initio PES that includes all relevant degrees of freedom.

6.1 Theoretical background of molecule/surface dynamics

To take into account a fully quantum mechanical calculations to analyse the dynamics of molecule surface

interaction some relevant theoretical approximations are necessary. Detailed description can be found in [125-126].

Based on the papers [125-126] a short description of molecule-surface dynamics can be read below.

One common approach is to assume that – due to the large mass difference between electrons and the nucleus – the

electrons follow the motion the nucleus adiabatically. This is the Born-Oppenheimer approximation [127]. In gas-

surface scattering electronically non-adiabatic processes are indeed occurring. However, the proper treatment of non-

adiabatic processes is rather complex. To solve the Schrödinger equation here is too complex since the phonons have

infinite degrees of freedom.

The additional approximation consists of surface atoms frozen to their ideal lattice positions, thereby neglecting the

phonons. This model can be handled fully quantum mechanically in the case of diatomic molecules as we discuss it

below. The reaction probability curve is characterized by three parameters: the maximum reaction probability, the

width parameter and the dynamical barrier height. The mere presence of phonons at zero surface temperature may

have an effect on computed reaction probability, which can only be assessed in theoretical calculations. The reaction

probability may be affected by alterations in surface temperature in experiments as well as calculations. In several

cases, the maximum probability and the dynamical barrier height are independent of surface temperature. This fact

means the frozen surface approximation determines the dynamical height barrier within a few hundredths of an eV.

The effect of surface temperature may be taken into account by readjusting the width parameter of the reaction
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probability curve to the surface temperature. For non-activated reactions, the reaction probability is always large, and

we would expect the surface temperature to be even less important for these reactions.

The calculation of potential energy surface is based on density functional theory (DFT) [128-129]. One serious

problem arises for the use of ab initio potential energies in particular in quantum dynamics simulations. To solve the

Schrödinger equation, one needs in general a continuous description of the potential since the wave functions are

delocalized. The ab initio calculations provide total energies for discrete configurations of the nuclei. In order to

obtain a continuous description, the ab initio energies have to be fitted to an analytical or numerical continuous

representation of the potential energy surface.

At last the Hamilton operator of the diatomic molecular beam scattering on a rigid solid surface is:
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where R(x,y,z) is the vector of molecule center-of-mass. (x,y) is parallel and z perpendicular to the surface. M is the

molecule mass and m is the reduced mass of the molecule ( )/(( 2121 mmmmm += ). Furthermore, r is the vector

of the internal co-ordinates of the molecule, which are usually taken as (r, Θ , Φ ). r is the distance of atoms of the

molecule, Θ is the polar and Φ  is the azimuthal angle of orientation of the molecular axis.

We have two basic different ways to determine the wave function. The first way is the solution of time independent

Schrödinger equation (TISE); the second one is the solution of time dependent Schrödinger equation (TDSE). The

6D dynamical problem have been formulated using coupled channel (CC) method, i.e., by writing TISE as a set of

coupled ordinary differential equations instead of partial differential equation in a scattering co-ordinate system

[126]. The goal is to obtain the scattering S-matrix by coupled channel method, which corresponds to the elastic or

the inelastic scattering.  Since the potential energy surface is conservative, the total energy of the probe particle is

constant during the whole process. However, there are open channels between the different states, e.g., the

vibrational and the rotational states. The vibrational or the rotational energy may change and we speak - in this sense

- about the inelastic scattering. The solution of TDSE by TDWP method is discussed in previous sections. For

problems involving small scattering basis sets, the computational effort of the CC method may be comparable with

the computational effort of the TDWP method [130-131]. However, involving bigger scattering basis set the TDWP

calculations becomes less expensive. The TDWP method will be the most efficient, if the goal is to obtain results for

one initial state, but for a large range of energies. CC method demands much smaller computer memory than TDWP

method.

Typical quantum numbers are the following: reciprocal lattice vector co-ordinates (m,n), the diffraction quantum

numbers; vibrational quantum numbers (ν ); rotational (angular) quantum numbers (j) and magnetic rotational

quantum numbers ( jm ). Diffraction quantum numbers refer to periodic solid surface. It is worth describing the
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rotational state jjm  by spherical harmonic functions and the vibration by rovibrational state j ν . The effect of

alignment ( jm ) on reaction is important, particularly two special positions: the 0=jm  "cartwheel" state and the

jm j =  "helicopter" state. Cartwheel state rotates in a plane perpendicular to the surface, helicopter in a plane

which is approximately parallel to the surface, jm  being the projection of j on the surface normal.

Investigating the molecule scattering by above described model, the diffraction probability and the sticking

probability can be computed, too. The sticking may yield dissociative adsorption. The final states show an

appropriate distribution of possible quantum states. This means the evolution of different rovibrational, rotational and

translational final states. The experiments and theoretical calculations led to better understanding the

molecule/surface dynamics. For example, the steering effect was underestimated hitherto. A qualitative explanation

of the steering effect is the following. Let us imagine a classical trajectory model and let the molecule position be

perpendicular to the surface at perpendicular incident angle. At the initial state, the molecule can be found in a plane

that is perpendicular to the surface. This is a special type of cartwheel position. If the initial kinetic energy is low

enough, then the molecule has enough dwell time to be reoriented approximately parallel to the surface. This position

means a much higher probability of dissociative adsorption. If the kinetic energy is high enough, the molecule is so

fast that it hits the repulsive wall of the potential before it is in a favourable configuration to dissiciative adsorption.

The molecule is scattered back into the gas phase rotationally excited.

6.2 Applications of molecular beam scattering

At last, we mention some results of TDWP, CC methods and experiments concerning molecule/surface dynamics.

Molecular beam experiments have simultaneously measured not only the diffraction peaks but the rotational state of

2H scattered from the surface, and observed rotationally inelastic diffraction, e.g., Ag(111) (ref. [132]), Rh(110)

(ref. [133]), Ni(110)  (ref. [134]), Cu(001) (ref. [135-136]), LiFl(001) (ref. [137-138]). Elastic rotationally mediated

critical kinematic selective adsorption (RMCK-SA) is experimented in the scattering of D molecule from the

Cu(001) surface [140-141]. In a series of diffraction spectra taken for different surfaces temperatures between 40 and

500 K resonance lineshapes are observed. The RMCK-SA effect results from the interaction among several

diffraction and rotational channels. From the best fit of the experimental profiles a lifetime for the third bound state

of the D molecule-Cu interaction potential is obtained.

Dai and Light [142] presented a six dimensional quantum wave packet dynamics calculation for dissociative

adsorption of H molecule on Cu(111) surface. The energy surface was taken into account by ab initio calculations

[143]. The dissociation probability with different quantum number was determined for all degrees of freedom:

namely the three Cartesian co-ordinates of the centre of mass and three internal co-ordinates.
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Diño et al. investigated the dissociative adsorption dynamics of D molecule on Cu(111) surface using the coupled

channel method [144]. To explain experimental observations, it is necessary to consider the coupling between the

rotational degree of freedom of the impinging molecule and the vibrational degree of freedom of the surface.

Harris and co-workers [145] compared a mixed quantum-classical treatment of molecule-surface scattering and

dissociation dynamics with classical and exact quantum methods. They found that the accuracy of the semi-quantal

method is at best as good as the classical, while the computational performance is considerably poorer.

The quantum dynamics have been solved by wave packet techniques in the case of 2H  scattering [146-147]. To

prevent reflections from the ends of the grid, grid-cutting techniques have been used [93][148].

McCormack and Kroes [149] executed a direct comparison between classical/quasiclassical trajectory results and the

six-dimensional quantum wave packet method in case of adsorption of H molecule on Cu(100) surface. The quasi-

classical reaction probability is in much better agreement with the quantum probability than the classical.

Hydrogen molecule adsorption on Pd(100) is determined in [150] by ab initio quantum and coupled channel

molecular dynamics calculations. It is shown that the determination of the potential-energy surface combined with

high-dimensional dynamical calculations leads to a thorough understanding of the hydrogen dissociation dynamics at

a transition metal surface. All relevant degrees of freedom are taken into account.

Miura et al. [151] investigated how the coupling between molecular vibration and rotation affects the direct

scattering of 2H  from Cu(111) by performing coupled channel computations. The conclusion is that the rotational

excitation in vibrationally elastic scattering processes occur more preferentially for 2H  in vibrational excited state

than for 2H  in vibrational ground state in low translational energy region, because the decrease of vibrational

energy in transition state region is larger for excited state than for ground state.

How orientation influences 2H  dissociative dynamics at different sites along the )111(3PtCu surface lateral

direction where Cu and Pt alternate is studied in [152]. Computational results show a strong dependence of 2H

dissociation on the 2H  orientation across Cu-Pt bridge site.

Miura at al. [153] inquired into the isotope effect on rotationally inelastic diffraction dynamics of hydrogen scattered

from Cu(001) executing coupled channel calculations. Strong isotope effect has been observed, viz., in the low

incident energy region, the rotationally inelastic diffraction probabilities of D molecule are larger than those of H

molecule. Increasing incident energies, however, the rotationally inelastic diffraction probabilities become smaller

than in the case of H molecule.

Miura and co-workers [154] investigated the effect of the correlation between molecular diffraction and rotational

excitation on the scattering dynamics of 2H  scattering from Cu(001). Apart from some oscillatory structures,

rotationally probabilities show opposite incident energy dependence for 2H  doing cartwheel-like rotations (increase

with increasing incident energies) and helicopter-like rotations (decrease with increasing incident energies).

 A time dependent quantum mechanical study of the chemisorption dynamics of 2H  scattering on W(001) is

presented in [155]. Bejan and co-workers [156] have investigated the desorption of CO on Cu surfaces that is
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induced by hot electrons.  The results of the wave packet computations are in fair agreement with the experimental

findings.

Eley-Rideal (ER) reactions are investigated between H atoms on metal and graphite surfaces [157]. In ER reaction, a

gas-phase particle incident on a substrate combines with a particle adsorbed onto that substrate contrary to a

Langmuir-Hinshelwood reaction involving diffusing reactant atoms. In general, the TDWP method of the Eley-

Rideal reactive scattering between a gas phase atom and an adsorbate is discussed in [158]. This paper contains the

description of a computer program that handles the ER problem solving TDWP method in three-dimension.

Six-dimensional quantum and classical dynamics computations of 2H  scattering on Pt(111) are presented [159].

The quantum calculation results are in good agreement with recent molecular beam experiments. Quasi-classical

method works better than classical method, the quasi-classical results being in excellent agreement with the quantum

results. The physical model consists of Born-Oppenheimer approximation and the reaction takes place on the ground

state potential energy surface. The Pt surface is frozen, Pt atoms are in equilibrium positions. The remained six

degrees of freedom is treated without further physical approximation. The most expensive calculation contains 168.5

million grid points in the six-dimensional discretized physical space. This quantum computation is a typical TDWP

method.

The feasibility of utilizing hydrogen molecules to probe adsorbate-surface interaction, the surface structure, and the

effective potential energy surface to the reaction considered are explored in [160]. Based on the calculations and

according to the experiments with ]121)[111(32 Pt/CuH , ]011)[110(/2 NiAlH , ]100)[001(/2 CuH the

scattering of 2H is able to distinguish among various components on surfaces.

7. Conclusions

Time dependent wave packet method has been reviewed emphasising its recent applications, numerical solutions and

computer animation techniques. Reactive scattering of atom and molecules, atomic and nuclear phenomena in laser

fields, electron scattering from molecule, photodissociation, photoabsorption, nonadiabatic processes of molecules,

Rutherford scattering, electrons in nano-scale devices, cooling and trapping in quantum wires and dots, scanning

tunneling microscopy, thermal energy atomic scattering and molecular beam scattering are the recent applications to

TDWP  method, which are involved at present work especially focusing on TEAS and MBS. Among other things

quantum chaotic behaviour of TEAS from an ordered surface has been demonstrated first. The long list of

applications supports the importance of TDWP method. The relevance of TDWP method eventuates the progression

of the numerical procedures and the simulation methods (e.g. animation techniques). The animation techniques might

lead to more accurate understanding of physical processes. The further researches might discuss more complicated

atom/molecule – surface interactions: e.g. recording step-edge orientation by TEAS; grazing angle TEAS; quantum

chaos of TEAS from ordered and disordered surfaces and molecular dynamics of polyatomic molecules relating to

frozen or vibrating surfaces.
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Appendix

It is shown the determination of some physical quantities from the wave function without completeness. The notation

system is the following: Ψ is the state function, r is the position vector, t is the time, F is the operator of a physical

quantity, k is the momentum vector, m is the particle mass, „i”  is the imaginary unit and „*’ is the conjugate.

Average of a physical quantity is ∫ ΨΨ
V

dVtFt ),(  ),(* rr , V is the whole space.

Probability density function in real space is ),(),(* ttPDFR rr ΨΨ= .

Probability density function in momentum space is ),(~),(~ * ttPDFM kk ΨΨ= .

Probability current density: ( )[ ]),(),(),(),(
2

 ** tttt
mi

rrrrj ΨΨ∇−Ψ∇Ψ= �
.

Probability current to a surface: Aj dI
A

 ∫= .

Dwell time probability ∫ ∫ Ψ=
t

t
V

dVdtttP
0

0

2),()( r 0t is the time when the measurement is started, and 0tt ≥  is

the measurement time. 0V  is the investigated volume. P(t) is a fraction of ( )t t− 0  [111].

Dwell time probability density is ∫ Ψ
t

t
dtt

0
2),(r .

The time independent wave function of Schrödinger equation is ∫
∞

∞−

Ψ= dttiEtE ),()exp(
2
1),( rr
π

ψ  (time-to-

energy Fourier transformation).
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Legends of figures

Figure 1 Probability density functions (PDF) of He-W(112) scattering propagation in the momentum space by colour

scale technique. P Px z and  are the momentum in direction x and z, respectively. Atomic units are used. (A) PDF is at

the beam source region (initial state). (B) - (H) PDF propagates in the interaction region. (I) PDF is at the detector

region (final state).

Figure 2 Probability density functions (PDF) in the case of different relative velocity spreads (RVS) of initial wave

function by 3D rendering technique. P Px z and  are the momentum in direction x and z, respectively. Atomic units are

used. (A) RVS is 0 and 5% in direction x and z, respectively. (B) RVS is 5% in the both directions. (C) RVS is 13%

in both directions. (D) RVS is 80% in both directions.

Figure 3 Probability density functions (PDF) in the case of different lattice constants by 3D rendering technique.

P Px z and  are the momentum in direction x and z, respectively. The relative velocity spread of initial wave function

is 5% in both directions. (A) Lattice constant is 5.18 (a.u.). (B) Lattice constants is 10 (a.u.). (C) Lattice constant is

13 (a.u.).  (D) Lattice constant is 20 (a.u.). Atomic units are used.

Figure 4 Animation by isosurface technique in real space. The isosurface value is approximately 5% to the maximum

of PDF at the initial time. Isosurfaces of PDF are rendered as a function of time in order of abc. (A) Initial wave

function. (B)-(H) Interaction region. (I) Final state. An isosurface of interaction potential is also shown.

Figure 5 Animation by window technique with colour scale in the momentum space. Slices of PDF parallel to the

periodic surface - near the interaction region as the time progresses - are rendered. P Px yand  are moment in the

direction x and y, respectively. (A) Wave packet has just reached the window. (B-H) Wave packet is in the

interaction region. (I) Wave packet has just left behind the window. Atomic units are used.

Figure 6 He resonant adsorption on He-Rh(311) scattering by window technique with 3D rendering. Atomic units are

used. Probability density function (PDF) split into slices parallel to the solid surface. P Px y and  are the moment in

the direction x and y, respectively. (A) and (B) PDFs are shown in the real space and in the momentum space,

respectively when the wave packet is near the classical turning point ( a.u. 62.2>=< z , z=2.62). The radius of the

circle in the origin is 3.74 (a.u.). (C) and (D) PDFs are shown in the real and the momentum space when the wave

packet is at the detector region. The radius of the circle in the origin is 3.74 (a.u.).

Figure 7 Cumulative probability function (CPF) of He probability density function (PDF) in case of He scattering on

W(112) model surface.  Thick solid line is the theoretical 2
2χ  law. Filled dots show the CPF from TDWP model
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calculations at the detector region after the scattering process. PDF is equal to 
2),( trΨ , where r is the position and

t is the time.
















