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The Eötvös Competition in Hungary is probably the oldest physics competition in the world:

it was organized �rst time in 1894. According to the number of participants it is a small event

but it has a much greater signi�cance in the country and it has also an international impact.

It had an important role in some outstanding Hungarian successes at the International Physics

Olympiads and it was a major inspiration for the �rst European Physics Olympiad.

In the paper a brief history of the competition, some famous winners, some typical problems

and some unexpected solutions are presented.

1 The history of the competition

The �rst Eötvös Competition was organized in the autumn of 1894, so it is probably
the world's �rst physics competition for high school students. [1]

Initially it was destined for students who have �nished high school in the same year. It
was a possibility for �rst semester students to prove their knowledge in the very beginning
of their university studies. In the �rst years, unlike now, there were both maths and physics
problems to solve. But an important rule, that all books and notes are allowed to use, is
valid already from the beginning. This competition was founded to measure skills instead
of lexical knowledge.

Year 1894 was very signi�cant for Hungarian science education: in addition to the
new competition the �rst volume of the Mathematical and Physical Journal for High
Schools (KöMaL) was published in the same year. [2] This famous journal exists more or
less continually until today and probably it is the world's oldest science journal for high
school student. This journal, which inspired generations of young people to deal with
maths and physics, would also deserve a talk and a paper.

1The paper is the edited version of the talk held at the 8th Congress of the World Federation of Physics

Competitions, Vienna, February 20th-24th, 2018.



The competition was named after Roland (Loránd) Eötvös
(1848-1919). He was an outstanding Hungarian physicist. First he
investigated capillarity (Eötvös rule describes the temperature de-
pendence of surface tension) but later his interest was focused to
gravitation. By a special torsion balance he could measure very
small changes of the gravitational �eld strength (gravitational gra-
dient), which was useful for searching oil and natural gas resources.
His most important experimental result was that he proved with
very high accuracy the equivalence of inertial and gravitational
masses. This was the only experimental result which was referred
by Albert Einstein in his paper about general relativity. [3]

But Eötvös was not only a scientist, he was also a science organizer. In 1891 he founded
the Mathematical and Physical Society, between 1894 and 1895 he was Minister of Cultural
A�airs for a short time. In 1895 he founded the József Eötvös College (named after his
father). The goal of this (until now existing) institution was to improve the quality of
teacher training in Hungary.

The character of the competition was determined by the organizers. In the beginning
Géza Bartoniek, a student of Eötvös was the physicist in the committee. After a few years
he became director of the Eötvös College and the competition continued for 20 years as
a pure maths competition.

In 1916 a new, separated physics competition was launched with the same rules: the
Iréneusz Károly Competition. From this year until 1943 Sándor Mikola was the main
organizer. He was teacher and director of the famous `Fasori Evangelikus Gimnázium'
(Lutheran high school) where, besides others, he taught John von Neumann, the famous
polyhistor and Eugene Wigner, the winner of Nobel prize for physics in 1963. Together
with László Rátz he renewed the Hungarian maths and physics education, a part of this
reform survives in some elite schools until today.

There were other two breaks: in the years 1919-1921 and 1944-1948 there were no
competitions organized because of the World Wars. Both competitions were re-established
in 1949. From this year `Eötvös Competition' is the name of the physics competition
and the maths competition continues as `Kürschák Competition'. From this time Miklós
Vermes, another well known high school teacher was Mikola's successor. He was responsible
for the competition from 1950 to 1987. He was also the problem maker of the 2nd and
9th IPhOs in Budapest (1968 and 1976). [4] The last major change in the competition
rules occurred in 1969: from this year younger high school students are also allowed to
participate (before 1969 they could participate only uno�cially).

Between 1988 and 2013 Gyula Radnai led the competition. He taught at Eötvös Loránd
University and he is until now the head of the physics editorial board of KöMaL. Professor
Frigyes Károlyházy, one of the few university professors who were interested in high school
teaching, invented very nice problems (one of them will be presented later). Besides him
Péter Gnädig and Gyula Honyek (former IPhO leaders and problem book writers [5] [6])
formed the committee in this period.

From more hundred winners only a few can be mentioned here because of limited
length.

In 1898 Theodore von Kármán won the competition. Later he was the �rst director of
the Jet Propulsion Laboratory and his name is well known from the Kármán vortex.
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In 1916 Leo Szilárd got `only' 2nd prize. He became well known, between others, about
the �rs chain reaction in 1942, Chicago.

In 1920 and 1921, when Neumann and Wigner �nished high school, there was no
competition, so they couldn't win.

In 1925 Edward Teller, member of the Manhatten project, `father of the H-bomb' won
both the maths and physics competitions.

In the years 1963 and 1965 Géza Tichy and Péter Gnädig, later IPhO leaders and
Eötvös Competition organizers were the winner.

Gábor Halász and Attila Szabó, IPhO absolute winners in 2005 and 2012-2013, won
the competition in 2006 and 2013, respectively.

2 The competition today

In 1947, after the war, the former Mathematical and Physical Society splitted into
two societies. Since 1949 the Eötvös Competition is organized by the Roland Eötvös
Physical Society. (The other successor is the János Bolyai Mathematical Society.) Since
2014 the organization is carried out by a three-member committee: Géza Tichy, Máté
Vigh and Péter Vankó (director). The students can write the paper at 14 di�erent venues
(Budapest and 13 other towns in Hungary), at the same time. The number of participants
is decreasing: 160 in 1999, and only 42 in 2017. (There are some hypotheses about the
possible reasons but it is di�cult to prove them.)

The competition rules are more or less the same as in the beginning: there is only one
round (in October); everybody can participate who learns in a high school or has �nished
the school in the same year; all written materials can be used; mobile phones and other
electric devices are not allowed, except a not programmable calculator; there are three
theoretical problems (from classical physics) for �ve hours. There is another `uno�cial'
rule: the total length of the problems is less then half a page.

The problems are more open compared to IPhO problems, therefore the evaluation
is really di�erent. Of course the committee solves the problems previously but makes no
marking scheme. After the competition every member of the committee reads all solutions
but gives no marks (only comments). Finally the better papers are discussed in details and
the prizes are determined. The essentially correct, complete solutions are more valuable.
(Small mistakes make less changes.)

First, second and third prizes as well as honourable mentions are awarded. The num-
bers of prizes are not previously determined. First prize is not every year awarded: usually
the (essentially) correct solution to all problems is expected to deserve it.

The prize giving ceremony is an important part of the competition. It is organized
about �ve weeks later (the evaluation needs time). All winners and their teachers are
invited (but the event is open for everybody). Additionally winners of the competitions
50 and 25 years before are invited, too. They are asked to tell the youth some words about
the in�uence of the competition on their scienti�c carrier.

During the ceremony the solutions to the problems are discussed in details, some-
times relevant experiments are presented, too. The bu�et after the ceremony gives a good
possibility to meet the best students and their teachers and to talk with each other.
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At last let's see some facts about �nancing. The supervision at the venues is car-
ried out by volunteers (by local teachers and professors). Printing, postage, bu�et and a
symbolic remuneration of the committee are paid by the Roland Eötvös Physical Society
from sponsorships. For two years the prizes have been covered by the donation of a for-
mer winner. The total cost is about 2500 euros per year, so this is really a low budget
competition.

3 Typical problems of the competition

3.1 The �rst example is the 3rd problem of the competition in 1985,
a typical problem of Frigyes Károlyházy :

A U-shaped tube contains liquid which initially is in equilibrium. If
a heavy ball is placed below the left arm of the tube, how do the liquid
levels in the two arms change?

Solution:

At �rst one could think that the gravitational force of the ball pulls
down the liquid in the left-hand arm. But this is a bad idea!

If we consider only the gravitational attraction of the ball, then the
two liquid surfaces would coincide with the same equipotential surface
of the ball's gravitational �eld. This surfaces are spheres centred on the
ball.

When both forces are present, the levels are somewhere between
the horizontal and the spherical surfaces. So we can conclude that the
level of the liquid in the left-hand arm will rise, whilst that in the right
will sink.

3.2 The next example is the 3rd problem of the last competition (in 2017), invented
by Máté Vigh:

A solid, homogeneous marble (glass ball) of radius 30 mm is sunk in boiling water
for a long time. Suddenly the marble is taken out of the boiling pot and submerged into
iced water for 30 seconds, then it is taken out and put into a heat insulating container.
(The water drops are wiped o� quickly with a towel.) Estimate the �nal (equilibrium)
temperature of the marble after su�ciently long time.

Data of the glass: density: 2500 kg/m3, speci�c heat: 830 J/(kgK), thermal conduc-
tivity: 0.95 W/(mK).

Solution:

Let imagine what happens in the �rst 30 seconds. At the beginning there is a uniform
temperature T1 = 100 ◦C in the ball. But the skin of the ball dipped into iced water
(T2 = 0 ◦C) starts to cool down. Then the cold front spreads inside.
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The main questions are the following: How does the characteristic penetration depth
ξ of the cold front depend on the penetration time? What will be the value of ξ after 30
seconds?

If the value of ξ is known the �nal temperature can be estimated, while the total heat
content of the ball doesn't change any more in the insulating container.

The problem has no exact analytical solution but there are some possibilities to esti-

mate the result. Two possible ways of the solution are suggested.

I. The simplest way to �nd the time dependence of ξ is the dimensional analysis.
Assuming that the characteristic depth is small compared to the radius of the ball it can
depend only on the following parameters: the thermal conductivity λ, the density ρ, the
speci�c heat c and the penetration time t. So the penetration depth can be written in the
following form:

ξ ∼ λαϱβcγtδ ⇒ ξ(t) ∼

√
λt

cϱ
.

By dimensional analysis the dimensionless constant in the formula can't be determined
but its order of magnitude is usually 1. The conclusion is ξ ≈ 3.7mm which is really much
smaller then the radius of the ball.

II. Amore sophisticated estimation can be obtained assuming a simpli�ed temperature
pro�le.

In this simpli�ed model (which is, of course, not realistic but approximates the reality
much better then the step function) the di�erential equation for ξ(t) can be written by
using the Fourier low:

λA
T1 − T2

ξ
= IQ = cρA

T1 − T2

2

dξ

dt
,

and can be solved. It gives:

ξ(t) = 2

√
λt

cϱ
,

which di�ers only by a factor 2 from the previous result.

If ξ is known the �nal temperature T∞ ≈ 63 ◦C can be calculated using the conservation
of energy in the insulating container.

Surprisingly, both approximation give mostly the same result despite of the di�erent
ξ values. It could happen because of the di�erent temperature pro�les (in the �rst case a
step function was assumed). Additionally this result is very close to the value calculated
by numerical methods.
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3.3 The next example is a seemingly simple optical problem from 2015 (2nd problem
of the competition), suggested and prepared by Géza Tichy and Péter Vankó:

The lens on the photo has a diameter of 4.00 cm, the distance of the lens and the tape
measure is 5.0 cm.

Determine the focal length of the lens.

Solution:

The �rst di�cult step in the solution is to recognise that there are three di�erent
planes: the plane of the lens, the plane of the tape measure and the plane of the virtual
image. Another di�culty is to understand the concept of angular size.

dd2Md1

v

ℓo

From the thin lens formula
1

f
=

1

o
− 1

v
,

where f is the asked focal length, o is the given distance between the lens and the tape
measure and v is the unknown distance of the virtual image from the lens.

The magni�cation is

M =
v

o
.

From the angular sizes
Md1
v + ℓ

=
d2

o+ ℓ
=

d

ℓ
,

where d1 and d2 can be read from the tape measure on the photo, d is the given diameter
of the lens, and ℓ is the unknown distance of the lens from the camera.

Solving the equations gives the focal length

f =
od

d2 − d1
.

The relative error of the focal length is

∆f

f
=

∆o

o
+

∆d

d
+

∆d1 +∆d2
d2 − d1

.
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The given and read data with errors are (if they are read carefully):

o = 5± 0.05 cm

d = 4± 0.005 cm

d1 = 3.4± 0.02 cm

d2 = 4.9± 0.02 cm

Finally the numerical solution is f = 13.3± 0.5 cm.

3.1 The last presented example is the 3rd problem of the competition in 2014, invented
by Péter Gnädig :

A thin spherical shell of copper has a radius of R and is
placed on an insulating support. One end of a long, straight,
radial, current-carrying wire is connected to a point on the
sphere's surface. The steady current I, �owing through the
surface, leaves the shell through another long, straight, radial
wire that is perpendicular to the input wire.

What kind of magnetic �eld is formed inside and outside
the shell? Find, in particular, the magnetic �eld strength at
the point P halfway between the input and output junctions
and just above the sphere's surface.

Solution:

The idea of the committee of how to solve the problem was the method of superposition.

In one case the current I �ows away (to in�nity) from the surface of the sphere radially
and uniformly in all directions � and similarly, in the second case, to the sphere from all
directions.

The pattern has cylindrical symmetry, so Ampère's law can
be used to determine the magnetic �eld strength. It can be seen
immediately that inside the shell there is no magnetic �eld.

Outside the sphere (r > R) the equation is:

2πr sinϑ ·B(r, ϑ) = µ0I

(
1− 1− cosϑ

2

)
,

which re-arranged gives:

B(r, ϑ) =
µ0I

4π
· cot(ϑ/2)

r
.
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At point P both current patterns give the same result, so the asked magnetic �eld
strength is

BP = 2 ·B(R, 45◦) =
µ0I

2πR

(√
2 + 1

)
.

One student used the method discussed above. It had been thought to be the `only
possible method' by the committee. But than two more correct solutions were found which
used completely di�erent ways.

A student proved (by gravitational analogy) that outside the sphere the arrangement
and a simple L-shape wire have the same magnetic �eld. Latter can be calculated by the
Biot-Savart law easily.

Another student proved (by stereographic projection) that the current lines on the
surface are circles. He determined the surface current density everywhere on the shell.
The asked magnetic �eld strength at point P could be calculated from the local surface
current density by the Ampère's law easily.

These surprising solutions give the best moments for a competition committee.

4 The impact of the competition

The Eötvös Competition is clearly the most prestigious physics competition in Hun-
gary, despite of that it is (already) not `o�cially' acknowledged: the winners don't get
any plus marks at uni entrance exams, eg. and despite of the much smaller number of
participants (compared to the competitions organized by the ministry). But there are no
categories, no di�erent age groups, etc., the winner is an absolute winner of the given year.
To be a `Winner of the Eötvös Competition' is something one can be proud of through
her/his whole life.

The problems of the Eötvös Competition in�uence the culture of physics problems
(and of problem solving) in Hungary.

`Puzzling Physics Problems' (published both in Hungarian and English) based partly
on former tasks of the competition. [5] [6] (The authors are former or present members of
the competition committee.) These problem books � with hints and solutions � are widely
used by gifted students to prepare themselves for competitions.

The problems of the Hungarian selecting competition for IPhO are between the (short,
open and tricky) tasks of the Eötvös Competition and the (long, detailed and conducted)
IPhO problems. Therefore Eötvös Competition has an important role in outstanding Hun-
garian IPhO successes. In the last twenty years three times Hungarian students were the
absolute winners of the International Physics Olympiad.

Besides its importance in Hungary the Eötvös Competition has international in�uence,
too. One main goal of the �rst European Physics Olympiad (EuPhO, Tartu, 2017) was to
return to the `old style', more creative IPhO problems. For example, the full text of the
experimental problem of the 9th IPhO (Budapest, 1976) was only 7 lines. [4] At the �rst
EuPhO it was declared that the style of the problems should be similar to the Eötvös
problems.

The participants could see the e�ects: there were more open and creative problems, it
was much shorter time to translate them but the evaluation of the solutions needed more
time. Hopefully the next EuPhO events will continue this old-new tradition.
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