MATHEMATICS-1

NAME:

24 November 2010

Test2-B

1. (4p)	2. (6p)	3. (9p)	4.(5p)	5. (6p)	6. (5p)	Th. (5p)	Σ (Max 40p)

Corrected by:

- 1. Let be given the points $P_1=(0, 1, 2)$ and $P_2=(3, 5, 6)$
 - a.) Find the equation of the plane passing through P_1 and perpendicular to the vector $\overrightarrow{P_1P_2}$!
 - b.) Find the equation of the line passing through the point P_2 and parallell with the normal vector of the plane given in question a.) !
- 2. Find the following integrals: a.) $\int 6 \cdot \sqrt[3]{x} + \frac{1}{x+3} dx$; b.) $\int (3x+5) \cdot \cos(2x) dx$;
- 3. Find the following integrals

a.)
$$\int \frac{4-x}{x \cdot (x+2)^2} dx$$
; b.) $\int_0^1 \frac{4x^3+2}{x^4+2x+3} dx$

- 4. Find the area between $f(x) = \frac{1}{x}$ and $g(x) = \frac{x}{4}$ over the interval [1;3]!
- 5. Find the volume of the solid given by the rotation of $f(x) = \frac{2\ln x}{\sqrt{x}}$ over [1; e] about the x-axis!
- 6. Find the following improper integral: $\int_{2}^{10} \frac{1}{\sqrt[3]{(x-2)^4}} dx$

Theoretical question:

Let be the function f(x) continuous on the interval [a;b].

Show that there exists
$$\xi \in [a;b]$$
 such that $\int_{a}^{b} f(x) dx = f(\xi) \cdot (b-a)$