MATHEMATICS-1

NAME:

16 October 2009

Test1-B

1. (6p)	2. (5p)	3. (5p)	4.(5p)	5. (10p)	6. (4p)	Th. (5p)	Σ (Max 40p)

Corrected by:

1. a.) Find $N(\varepsilon)$ for the sequence $a_n = \frac{n^2}{3n^2 - 1}$ if $\varepsilon = 0,005$. b) Find the following limit: $\lim_{n \to \infty} \frac{n}{2} + 1$ (Hint: use quotient the

b.) Find the following limit: $\lim_{n\to\infty} \frac{n}{5^n}$! (Hint: use quotient theorem)

2. Find the points of discontinuity for the following function, and classify them:

$$f(x) = \begin{cases} x^2 + 1 & \text{if } x \le 1\\ \frac{x^2 - 1}{x - 1} & \text{if } 1 < x \le 3\\ \frac{1}{x - 3} & \text{if } x > 3 \end{cases}$$

3. Find the equation of the tangent line to $f(x) = (x-3)^3 + \frac{1}{2x-7}$ at the point x₀=4!

- 4. Find the derivative of the following functions a.) by definition: $f(x) = \frac{1}{2x-7}$ b.) by rules: $g(x) = \sqrt{2x + \cos^2 x}$
- 5. Sketch the graph of the function $f(x) = x^2 \frac{2}{x}$
- 6. Evaluate $\underline{a} \cdot \underline{b}$ and $\underline{a} \times \underline{b}$ if $\begin{cases} \underline{a} = 3\underline{i} \underline{j} + 2\underline{k} \\ \underline{b} = 7\underline{i} \underline{k} \end{cases}$

Theoretical question:

Using the definition of the derivative, show that for the differentiable functions f(x) and g(x) $\left[f(x) + g(x)\right]' = f'(x) + g'(x)$

$$[f(x)+g(x)] = f'(x)+g'(x)$$