MATHEMATICS-1

NAME:

16 October 2009

Test1-A

1. (6p)	2. (5p)	3. (5p)	4.(5p)	5. (10p)	6. (4p)	Th. (5p)	Σ (Max 40p)

Corrected by:

1. a.) Find $N(\varepsilon)$ for the sequence $a_n = \frac{n^2}{2n^2 + 1}$ if $\varepsilon = 0,02$. b.) Find the following limit: $\lim_{n \to \infty} \left(\frac{n+3}{n-1}\right)^{2n}$

2. Find the points of discontinuity for the following function, and classify them:

$$f(x) = \begin{cases} x^2 & \text{if} \quad x \le 0\\ \frac{\sin 2x}{x} & \text{if} \quad 0 < x < \pi\\ \sin 2x & \text{if} \quad x \ge \pi \end{cases}$$

- 3. Find the equation of the tangent line to $f(x) = x^3 + \sqrt{5x-1}$ at the point $x_0=2!$
- 4. Find the derivative of the following functions

a.) by definition: $f(x) = \sqrt{5x-1}$ b.) by rules: $g(x) = \frac{x^2 + 3x}{\cos(2x)}$

- 5. Sketch the graph of the function $f(x) = x^3 + \frac{3}{x}$
- 6. Evaluate $\underline{a} \cdot \underline{b}$ and $\underline{a} \times \underline{b}$ if $\begin{cases} \underline{a} = 4\underline{i} 2\underline{j} + 3\underline{k} \\ \underline{b} = 5\underline{i} \underline{j} \end{cases}$

Theoretical question:

Using
$$\left[\tan(\tan^{-1} x)\right]' = x$$
, and the chain rule, show that $(\tan^{-1} x)' = \frac{1}{1+x^2}$