MATHEMATICS-1

Exam (B)

NAME:

8 January 2010

1. (6p)	2. (7p)	3. (13p)	4. (8p)	5. (7p)	6. (6p)	7. (7p)	Th. (6p)	Σ (Max 60p)	MW	Σ+MW

Corrected by:

- 1. Let be given the points $P_1=(1, 1, 2)$, $P_2=(1, 5, 6)$ and $P_3=(2, 2, 6)$.
 - a.) Find the dot product and the cross product of te vectors $\overrightarrow{P_1P_2}$ and $\overrightarrow{P_1P_3}$!
 - b.) Find the equation of the plane passing through the points P_1 , P_2 and P_3 !
- 2. Find the derivative of the following functions
 - a.) by definition: $f(x) = \frac{1}{\sqrt{x}}$
- b.) by rules: $g(x) = \frac{x+3}{\cos(x^2)}$
- 3. Sketch the graph of the function $f(x) = -3 x \frac{4}{x-3}$
- 4. Find the following integrals: a.) $\int (3x+2) \cdot e^{2x} dx$; b.) $\int \frac{x^2+4x+9}{x \cdot (x+3)^2} dx$
- 5. Find the arc length of $f(x) = \frac{4 \cdot \sqrt{x^3}}{3}$ over the interval [0;6]!
- 6. Evaluate the following improper integral: $\int_{1}^{9} \frac{2}{\sqrt[3]{x-1}} dx$
- 7. Find the solution set of the following linear system:

$$x + 2y + z = 0$$

 $2x + 5y - z = 17$
 $-x + 2y + z = -2$

Theoretical question:

Show that
$$\lim_{x\to 0^+} \frac{\sin x}{x} = 1$$