MATHEMATICS-1

1.

Exam (A) NAME: 18 December 2009

NAME:

1. (7p)	2. (7p)	3. (12p)	4. (8p)	5. (6p)	6. (6p)	7. (9p)	Th. (5p)	$\sum_{(Max 60p)}$	MW	Σ+MW

Find the following limits: a.)
$$\lim_{n \to \infty} \left(\frac{n+3}{n-1} \right)^{2n}$$
 b.) $\lim_{n \to \infty} \frac{1,2^n}{n^{100}}$ (Hint for b: Use quotient rule!)

2. Find the derivative of the following functions a.) by definition: $f(x) = \frac{1}{x+3}$ b.) by rules: $g(x) = \frac{3x}{\sin(5x)}$

3. Sketch the graph of the function
$$f(x) = x + 1 + \frac{4}{x - 1}$$

4. Find the following integrals: a.) $\int (2x^4 + 1) \cdot \ln x \, dx$; b.) $\int \frac{x+3}{(x^2+1) \cdot (x+2)} \, dx$

5. Find the volume of the solid given by the rotation of $f(x) = \frac{e^x}{e^x + 1}$ over [0;1] about the x-axis!

- 6. Evaluate the following improper integral: $\int_{0}^{\infty} \frac{2}{x^2 + 6x + 8} dx$
- 7. For which values of a and b has the following system of equations

x	+	2y	+	Z	=	2	a.) no solution
2x	+	5y	+	3 <i>z</i>	=	1	b.) exactly one solution
-x	+	v	+	$a \cdot z$	=	b	c.) infinitely many solutions

Theoretical question:

Show that the substitution $t = tan\left(\frac{x}{2}\right)$ rationalizes the integral $\int \frac{1}{2\sin x - \cos x} dx$