## **MATHEMATICS-1**

Exam

**NAME:** .....

## 19 January 2011

| 1.<br>(6p) | 2.<br>(6p) | 3. (10p) | 4.<br>(13p) | 5.<br>(6p) | 6.<br>(6p) | 7.<br>(9p) | Th. (4p) | Σ<br>(Max 60p) | MW | Σ+MW |
|------------|------------|----------|-------------|------------|------------|------------|----------|----------------|----|------|
|            |            |          |             |            |            |            |          |                |    |      |

Corrected by: .....

- 1. Let be given the points  $P_1=(1, 1, 2)$ ,  $P_2=(2, 3, 6)$  and the vector  $\underline{n}=-2\underline{i}+3\underline{j}+5\underline{k}$ .
  - a.) Find the equation of the plane passing through  $P_1$  and perpendicular to  $\underline{n}$ !
  - b.) Find the equation of the line passing through the points  $P_1$  and  $P_2$ !
  - c.) Find the angle between the vectors  $\underline{n}$  and  $\overrightarrow{P_1P_2}$ !
- 2. Find the derivative of the following functions
  - a.) by definition:  $f(x) = (3x+1)^2$
- b.) by rules:  $g(x) = (3x+1)^2 (2\sqrt{x^3} + \cos 5x)$
- 3. Sketch the graph of the function  $f(x) = 2x \frac{27}{x^2}$
- 4. Find the following integrals:

a.) 
$$\int (5x^4 + 3) \cdot \sin(x^5 + 3x) dx$$
; b.)  $\int (3x^2 + 2) \cdot \ln x dx$ ; c.)  $\int_{1}^{\infty} \frac{6}{x \cdot (x + 2)} dx$ 

5. Find the volume of the solid given by the rotation of  $f(x) = \sqrt{x+1} \cdot e^{-x}$  over [-1;0] about the x-axis!

$$x + 2y + z = 0$$

6. Solve the following linear system: 2x + 5y - z = -5

$$x + 6y + 3z = -6$$

7. Let be given the following matrices:

$$A = \begin{bmatrix} 2 & 6 \\ 1 & 4 \end{bmatrix} \qquad ; \qquad B = \begin{bmatrix} 0 & 2 & 1 \\ 3 & 1 & 0 \end{bmatrix}$$

Find the matrices if they exist: A+B; AB; BA;  $A^{-1}$ ;  $B^{-1}$ 

## Theoretical question:

Let be given the matrix  $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$  where  $\det(A) = a \cdot d - c \cdot b \neq 0$ 

Show that 
$$A^{-1} = \frac{1}{\det(A)} \cdot \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$