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Abstract.

We characterize the structure of graphs containing neither the 4-cycle nor its
complement as an induced subgraph. This self-complementary class G of graphs
includes split graphs, which are graphs whose vertex set is the union of a clique
and an independent set. In the members of G, the number of cliques (as well as
the number of maximal independent sets) cannot exceed the number of vertices.
Moreover, these graphs are almost extremal to the theorem of Nordhaus and
Gaddum (1956).

1. Results.
We study undirected graphs without loops and multiple edges. A graph G

is called F -free if no induced subgraph of G is isomorphic to F. In this note we
give the structural characterization of the self-complementary class G of graphs
which are C4-free and 2K2-free, where C4 denotes the cycle of four vertices and
2K2 is the matching of two edges, i.e., the complement of C4.

Theorem 1.1. A graph G = (V;E) is C4-free and 2K2-free if and only if there
is a partition V1 [ V2 [ V3 = V with the following properties

(i) V1 is an independent set in G.
(ii) V2 is the vertex set of a complete subgraph in G.
(iii) V3 = ; or jV3j = 5, and in the latter case V3 induces a 5-cycle in G.
(iv) If V3 6= ;, then for all vi 2 Vi, i = 1; 2; 3, v1v3 62 E and v2v3 2 E hold.
A split graph, as introduced in [3, 5], is a graph satisfying properties (i) and

(ii) of Theorem 1.1 with V1 [ V2 = V . Hence, G is a natural extension of the
thoroughly investigated class of split graphs. On the other hand, G is a subclass
of pseudothreshold graphs characterized by Chvátal and Hammer in [1, Theorem
4(iii)] as the graphs G = (V;E) admitting a vertex partition V1 [ V2 [ V3 = V
that satis�es (i), (ii), (iv), and the further property that no three vertices in V3
are pairwise non-adjacent.

Corollary 1.2. If G = (V;E) is a C4-free and 2K2-free graph, then:
(i) either G is a split graph, or there are exactly �ve distinct vertices

vi 2 V , i = 1; : : : ; 5, such that each G� vi is a split graph,
(ii) G is a pseudothreshold graph.

Recently, Prömel and Steger [7] proved the following closely related asymp-
totic result: the ratio of the numbers of split graphs and C4-free graphs on n
vertices tends to 1 as n tends to in�nity.
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Split graphs are perfect (in fact, split graphs form the largest self-comple-
mentary class consisting of chordal graphs); however, not all graphs in G are
perfect since C5 is in G. On the other hand, the following simple corollary may
be of some interest because Berge�s famous conjecture concerning perfect graphs
has not yet been veri�ed for C4-free (or, equivalently, for 2K2-free) graphs.

Corollary 1.3 The Strong Perfect Graph Conjecture is true for the class of
C4-free and 2K2-free graphs.

The following important property of graphs G 2 G shows some similarity to
the class of chordal graphs.

Corollary 1.4. If G = (V;E) is a C4-free and 2K2-free graph, then it contains
at most jV j maximal independent sets and at most jV j cliques.
The well-known theorem of Nordhaus and Gaddum [6] states that for any

graph G = (V;E), �(G) + �( �G) � jV j + 1 holds, where �G and �(G) denote
the complement and the chromatic number of G, respectively. The following
corollary to Theorem 1.1 shows that the members of G are almost extremal with
respect to this theorem.

Corollary 1.5. If a graph G = (V;E) is C4-free and 2K2-free, then �(G) +
�( �G) � jV j.
Wagon [9] proved that if G = (V;E) is a 2K2-free graph with maximum

clique size !(G), then �(G) �
�
!(G)+1
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For C4-free and 2K2-free graphs the following stronger upper bound is valid.
It was previously proved by Gyárfás in [4] with a decomposition result weaker
than our Theorem 1.1.

Corollary 1.6. If a graph G = (V;E) is C4-free and 2K2-free, then �(G) �
!(G) + 1. Here equality holds if and only G is not a split graph.
Finally, we give a result related to a general problem due to Erd½os et al.[2].

Theorem 1.7. Let k = 2; 3 or 4. If G = (V;E) is a C4-free and 2K2-free
graph without isolated vertices such that every edge is contained in a complete
subgraph on k vertices, then there is a set of at most jV j=k vertices that meets
all cliques of G, unless G is isomorphic to C5 (and k = 2).

An example given in [8] shows that Theorem 1.7 does not hold for k = 5,
even if G is assumed to be C5-free. On the other hand, for k = 2 and 3, the
conclusion holds for chordal graphs as well; see [8].

2. Proofs
Proof of Theorem 1.1. One can check that all graphs having a vertex par-
tition with properties (i)�(iv) are C4-free and 2K2-free. To prove the converse
statement, suppose that G = (V;E) contains neither C4 nor 2K2 as an induced
subgraph. If G does not contain an induced cycle or its complement on more
than three vertices, then G is a split graph (by the results of [3, 5], i.e., it sat-
is�es the requirements with V3 = ;. Otherwise, since G is self-complementary,
we can assume without loss of generality that Ck is an induced cycle on k � 4
vertices in G. Now k = 4 is impossible for G is C4-free, and k � 6 is excluded
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since every cycle of length at least six contains 2K2 as an induced subgraph.
Thus, k = 5, i.e., G has an induced 5-cycle.
Let V3 = fv1; : : : ; v5g be the vertex set of this 5-cycle, where vivj 2 E if

and only if jj � ij = 1 or 4. Let x denote an arbitrary vertex in V � V3. We
claim that x is adjacent to at least one vi if and only if x is adjacent to each vi
(i = 1; : : : ; 5).
Suppose to the contrary that, say, xv1 2 E and xv5 62E. Since fx; v1; v3; v4g

cannot induce 2K2, x must be adjacent to v3 or v4. Since fx; v1; v4; v5g cannot
induce C4, we obtain that xv4 62 E; thus xv3 2 E. In this case, however, either
fx; v2; v4; v5g induces 2K2 or fx; v1; v2; v3g induces C4 (according as xv2 2 E or
xv2 62 E), yielding a contradiction that proves our claim.
De�ne V2 as the set of all vertices in V nV3 which are adjacent to at least one

(or, equivalently, to each) vi 2 V3, and let V1 = V n(V2 [ V3). For any xy 2 E
induced by V1; fx; y; v1; v2g would induce 2K2, and for any x; y 2 V2; x 6= y; xy 62
E, the vertex set fx; y; v1; v3g would induce C4. Thus, V2 induces a complete
subgraph and V1 is an independent set, completing the proof of Theorem 1.1.

Proof of Corollary 1.3. If G 2 G is not perfect, then G is not a split graph,
and thus by Theorem 1.1 it contains an induced 5-cycle.

Below we use the notation introduced in Theorem 1.1 and its proof.

Proof of Corollary 1.4. Since G is a self-complementary class, it su¢ ces to
prove that for any member G = (V;E) of G, G contains at most jV j cliques.
This is trivial if G is a split graph. Hence, we may assume that jV3j = 5. Now
observe that those cliques of G which meet V3 are exactly those subgraphs of G
which are induced by some set V2 [ fvi; vjg where jj � ij = 1 or 4. There are
�ve sets of this type, and the number of cliques of the split graph induced by
V1 [ V2 is at most jV1 [ V2j. Therefore, the total number of cliques in G is at
most jV1j+ jV2j+ 5 = jV j.
Proof of Corollary 1.5. For any member G = (V;E) of G, it is obvious
that �(G) � jV2j and �( �G) � jV1j. Therefore we are home if V3 = ;. We may
assume that V3 6= ;. Let F and H denote the subgraphs of G induced by V2[V3
and V1 [ V3, respectively. Observe that �(F ) = jV2j + 3 and �( �H) = jV1j + 3.
Therefore,

�(G) + �( �G) � jV2j+ 3 + jV1j+ 3 = jV j+ 1.
Proof of Theorem 1.7. For split graphs (i.e., where V3 = ;) the result was
proved in [8]. Hence, assume that jV3j = 5. Note further that V2 = ; implies
V1 = ; and G = C5, so that k = 2 and three vertices can meet all edges of G.
Suppose that V2 6= ;. Then the cliques meeting V3 contain all vertices of V2,

therefore any x 2 V2 meets each of them. Moreover, the cliques disjoint from V3
are cliques in the split graph induced by V1 [V2, too, and consequently, there is
a set X of cardinality at most (jV j�5)=k that meets each of them. We conclude
that the set X [ fxg meets all cliques of G, and

jX [ fxgj � (jV j � 5)=k + 1 < jV j=k for k � 4.
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