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A diplomatéma kíırása

Témavezető:

Neve: Simon Ferenc

Tanszéke: Fizika Tanszék

E-mail ćıme: simon@esr.phy.bme.hu

Telefonszáma: 463-3816

Azonośıtó: DM-2012-39

Diplomatéma ćıme: Spintronikai alkalmazások motiválta új, szénalapú nanoanyagok

szintézise és szilárdtest-spektroszkópiai vizsgálata

Melyik szakiránynak ajánlott? “Kutatófizikus”

A jelentkezővel szemben támasztott elvárások: Kitartó, szorgalmas munkavégzés,

affinitás a ḱısérleti munka iránt, stabil elméleti alapok

Léırása: A spintronika a modern szilárdtestkutatás és anyagtudomány egyik legizgal-

masabb területe. A spintronikai alkalmazásokhoz elengedhetetlen új és új anyagok előál-

ĺıtása és ezek vizsgálata a spin relaxációs idők nagyságának szempontjából. Utóbbit

elektronspin-rezonancia spektroszkópia módszerrel valóśıtjuk meg. A spintronikai alkal-

mazások szempontjából felmerült anyagok a szén nanocsövek, a grafén és a bórral dópolt

gyémánt. A jelentkező feladata i) alkáli atomokkal dópolt szén nanocsövek és grafén előál-

ĺıtása, ii) ezen anyagok mágneses és vezetési tulajdonságainak mérése ESR- és Raman-

spektroszkópiai mérésekkel, iii) bórral dópolt gyémánton végzett hőmérsékletfüggő ESR-

mérések elvégzése és ezek értelmezése. A jelentkező érdeklődésétől függően lehet az i-iii

feladatok közül a hangsúlyt bizonyosakra helyezni a dolgozatban.
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Kivonat

Az elektron töltésének és spinjének manipulálásán alapuló spintronika az anyagtudományt

és a szilárdtestfizikát leginkább egyeśıtő tudományterület. Habár a spintronikai alkalma-

zások első példái, a merevlemez-olvasófejek már fellelhetőek számı́tógépeinkben (2007-es

fizikai Nobel-d́ıj), a multidiszcipĺına számos jelentős jövőbeli alkalmazási lehetőséget ḱınál,

amelyekkel kiválthatjuk elektronikai eszközeinket. A spintronikai eszközök előálĺıtásához

három alapvető követelmény adható: spinpolarizált áram előálĺıtása; a spin-relaxációs

jellemzők ismerete; és a spin detektálása.

Az MSc diplomamunkámban egy nemrégiben felfedezett szupravezető, a bórral dópolt

gyémánt (BDD) spinrelaxációs tulajdonságait vizsgálom elektronspin-rezonancia spek-

troszkópiával (ESR). Egy 6400 ppm bórral dópolt gyémánt (Tc = 3.8 K) mintán azonośı-

tom a vezetési elektronok ESR-jelét (CESR) normál állapotban.

A dolgozat röviden összefoglalja a BDD szokatlan fizikai tulajdonságait, köztük a

szigetelő-szupravezető átmenetből eredő jellemzőit. A mágneses rezonancia és a vezetési

elektronspin-rezonancia elméletét fenomenologikusan tárgyalom.

A CESR jellemzőit azonośıtom a BDD-ben: (i) az ESR-intenzitás karakterisztikusan

eltér az 1/T -jellegű Curie-hőmérsékletfüggéstől; (ii) az állapotsűrűség összhangban van

fotoemissziós mérésekkel; (iii) a vonalszélesség enyhén növekszik a hőmérséklettel, tel-

jeśıtve a fémek spinrelaxációjának Elliott-Yafet-elméletét. Az empirikus Elliott-Yafet-

reláció Beuneu-Monod-ábráját alkalmazva anomális összefüggést állaṕıtok meg a g-faktor

eltolódás, a CESR vonalszélesség és az ellenállás között, amely szokatlanul nagy spinre-

laxációs időre (τs) utal a bórral dópolt gyémántban.

A bemutatott eredmények jelentős része nemrégiben megjelent a Phys. Rev. B folyóirat-

ban [1].



Abstract

Spintronics, i.e., the manipulation of spin and charge degrees of freedom of electron creates

the closest link between materials science and solid-state physics. The earliest examples of

spintronic applications are present in our computers as read heads of hard drives (Nobel

Prize in Physics in 2007). Nevertheless, this multidisciplinary field possesses an immense

potential to replace all electronic devices by their spintronic counterpart. To make useful

devices, three fundamental issues are to be adressed: polarization of a spin ensemble;

spin-relaxation properties; and detection of the spin.

In my Master’s thesis, I investigate the spin-relaxation properties of a recently discov-

ered superconductor, boron-doped diamond (BDD) using electron spin resonance spec-

troscopy (ESR). The electron spin resonance of itinerant electrons (CESR) is observed in

a 6400 ppm boron-doped sample (Tc = 3.8 K) in the normal state.

This work gives a short summary of the unusual physical properties of BDD, especially

those arising from the insulator-superconductor transition. The theory of magnetic reso-

nance and that of the CESR are phenomenologically discussed.

The benchmarks of CESR are identified in BDD: (i) the ESR signal intensity charac-

teristically differs from the Curie (i.e., 1/T ) temperature dependence; (ii) the density of

states matches the value based on photoemission spectroscopy measurements; and (iii)

the ESR linewidth displays a slight increase with increasing temperature in accordance

with Elliott-Yafet theory of spin relaxation. Using the Beuneu-Monod plot of the empir-

ical Elliott-Yafet relation, an anomalous relation is found between the g-factor shift, the

CESR linewidth, and the resistivity. The latter result indicates an unexpectedly large

spin-relaxation time (τs).

Results presented herein were recently published in Phys. Rev. B [1].



Chapter 1

Introduction and motivations

Limitations of today’s electronics might be overcome with using the spin degree of free-

dom, which is the core principle in the field of spintronics1. For spintronic applications, an

effective way of spin polarization, spin injection, control on spin relaxation, and error-free

spin detection is needed [2].

To generate spin-polarized current and to detect it, the re-discovered spin Hall effect

(SHE) has become a standard tool within a decade [3, 4]. The SHE, which originates

from the spin-orbit coupling, deflects the electrons perpendicular to the current in a spin-

dependent way, and inversely, spin current induces a perpendicular electric current [5].

To effectively manipulate information in spintronic devices, the spin-relaxation time, τs,

should be in the range of 10ns . . . 1 µs. An often cited concept is that“pure materials made

of light elements” might approach this limit [6]. (Nevertheless, the recent observation of

unexpectedly low τs in graphene [7] contradicted this rule of thumb.)

The diversity of carbon materials gives rise to a remarkable range of applications. Dia-

mond, the three-dimensional allotrope of carbon is widely used in the industry due to its

superlative properties, such as, e.g., the mechanical stability and the large mobility [8].

It has been proposed that diamond is appropriate for quantum information processing

applications [9, 10] and for nano-electromechanical (NEMS) devices [11]. The weak spin-

orbit coupling of carbon makes it a viable candidate for future spintronic applications.

Boron-doped diamond (BDD) is an example of Mott’s metal above the threshold boron

concentration nc = 4 − 5 · 1020 cm−3. The experimental discovery of superconductivity

in BDD in 2004 [12] came as a major surprise to the research community working on

diamond. It has been proven that superconductivity arises from the lightly hole-doped

1The term was coined by S. A. Wolf in 1996, as a name for a DARPA initiative for novel magnetic

materials and devices.
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diamond bands [13], and an increase of the superconducting critical temperature can be

achieved by additional doping [14]. As BDD might be relevant for future spintronics, a

spin-relaxation study is required. Herein, I study the electron spin resonance in BDD to

determine τs.

In this thesis, I present the theoretical background and results of my work. In Chapter 2, I

introduce the basic concepts of superconductivity and the studied material, boron-doped

diamond, and I give a short review on the experimental and theoretical investigation of

spin dynamics in metals. In Chapter 3, the characterization measurements of BDD sam-

ples and the description of the experimental setup are presented. Chapter 4 provides the

ESR measurement results and the discussion. The thesis concludes with a short summary

in Chapter 5.



Chapter 2

Theoretical background

In my Master’s project, I studied the spin dynamics of superconducting boron-doped dia-

mond. To establish these investigations, a theoretical overview is required on the extraor-

dinary properties of boron-doped diamond, with special emphasis on superconductivity,

and the spin relaxation in metals.

2.1 Superconductivity

Here, I will recapitulate the striking features and basic theories of superconductors. The

elementary properties of superconductors are the following: (i) superconducting materials

show zero electrical DC resistance below the superconducting critical temperature (Tc);

(ii) below Tc and below a critical value of the applied magnetic field, a superconductor

behaves as a perfect diamagnet regarding its response to the magnetic field (Meissner-

effect); (iii) below Tc a superconducting gap [2∆(T )] occurs around the Fermi level; (iv)

a supercurrent appears between two separated superconductors (Josephson-effect) [15].

By 1950, experimentally several of these unique properties were known, however, the

Ginzburg-Landau theory could only give a phenomenological description. The first mi-

croscopic theory was provided in the seminal paper of Bardeen, Cooper, and Schrief-

fer (BCS) [16]. Therein, an electron-gas was considered, where the electrons interact via

exchange of virtual phonons, i.e., electrons pair up to form bound states of Cooper pairs.

The BCS theory simplified the attractive interaction of electrons near the Fermi energy

by an effective interaction V , e.g., it was neglected that the phonon interaction is retarded

in time. The BCS theory yields an experimentally relevant relation between Tc and the
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density of states, D(EF):

Tc = 0.85 θD exp

(
− 1

D(EF)V

)
, (2.1)

where θD is the Debye temperature. This equation is only valid in the weak-coupling limit

of the electron-phonon coupling: 1 � D(EF)V = λ. The energy gap at 0 K, ∆(0), is

connected to Tc via
∆(0)

kBTc

= 1.76, (2.2)

where kB is the Boltzmann constant.

Due to ignoring the details of the electron-phonon interaction, the interaction V was

replaced by more realistic potentials. In the framework of the Eliashberg theory [17], the

modern expression of the electron-phonon coupling constant reads

λ = 2

∫ ∞
0

dΩ
g(Ω)F (Ω)

Ω
= 2

∫ ∞
0

dΩ
α2F (Ω)

Ω
. (2.3)

Herein, g(Ω) is the electron-phonon matrix element, F (Ω) is the phonon density of states,

and α2F (Ω) is the Eliashberg spectral function of electron-phonon scattering.

To take into account the screened Coulomb repulsion, a dimensionless quantity, µ is

introduced. The Coulomb pseudopotential is renormalized due to retardation, and reads

as follows

µ∗ =
µ

1 + µ ln
(
EF
kBθD

) , (2.4)

where EF is the Fermi energy.

Via numerical solutions of the Eliashberg equations, McMillan [18] could reproduce Tc in

most cases using the expression:

Tc =
θD

1.45
exp

{
− 1.04(1 + λ)

λ− µ∗(1 + λ)

}
. (2.5)

Superconductors can be classified according to two basic criteria. The existence of one

or two critical magnetic fields defines Type-I and Type-II superconductors, respectively.

In the case of Type-II superconductivity, magnetic field can penetrate in form of flux

lines (vorteces). Based on the validity of the BCS theory, superconducting materials are

conventional or unconventional [15].

2.2 Boron-doped diamond

The superlative properties of diamond make it irreplaceable in several industrial applica-

tions. The appearance of man-made diamond on the diamond market and in scientific
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Figure 2.1: The crystal lattice of dia-

mond [19].

Figure 2.2: Chemical vapour deposition

(CVD) synthetic diamond is used for a wide

range of high-technology applications [20].

laboratories was therefore an important leap to unravel its exceptional behaviour. Herein,

I will give a short summary of the synthesis methods of this material, and I will discuss

the insulator-metal transition in its derivative, boron-doped diamond.

2.2.1 Synthesis and basic properties

The sp3-bonded allotrope of carbon, diamond, is a metastable crystal at ambient pres-

sure and temperature. Whereas thermodynamically the sp2 bonds are more stable, the

activation barrier separating the sp2-bonded graphite and diamond is large enough to

prevent the transformation. Diamond crystallizes in a variation of face-centered cubic

structure (see Fig. 2.1), the so-called diamond lattice. It consists of two interpenetrating

face-centered cubic Bravais lattices, displaced along the body diagonal of the cubic cell

by one quarter the length of the diagonal [21].

Pure diamond is colorless and transparent. However, due to different substitutional impu-

rities and defects, natural diamond can be found in various colours. The strong covalent

bonding explains that diamond is the hardest material in the nature. It has large ten-

sile strength, excellent thermal conductivity, and large Debye temperature (θD). Unlike

graphite, it is a large, indirect band-gap (5.5 eV) insulator [22].

The excellent thermal conductivity, the large breakdown field and the large electron

and hole mobility would support its application in electronic devices. In order to build

diamond-based integrated (or even spintronic) devices, one needs to overcome several dif-

ficulties. The rarity of natural diamond requires a facile, high-yield synthesis method,
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with which both p- and n-type doping can be achieved [22]. Below, I will show that the

former two issues has already been resolved. Although the lack of n-type doping was a

serious obstacle to applications, successful n-type doping with shallow donors has recently

been demonstrated [23].

The production of man-made diamond (see Figure 2.2) was attempted as early as 1880 [24].

The first, reproducible method, the so-called high-pressure high-temperature (HPHT)

method was adapted in 1955 by General Electrics Company [25]. Although commer-

cially the low-pressure methods would have been more attracting, the chemical vapour

deposition method (CVD) was invented as late as the 1980s.

High-pressure high-temperature method

Figure 2.3: The belt press design for HPHT

production of synthetic diamond [26].

Figure 2.4: Schematic description of the

CVD method [22].

The HPHT process mimics the natural diamond growth due to geophysical processes. A

typical setup of the HPHT approach is shown in Fig. 2.3. The so-called belt press design

involves huge hydraulic press at high temperature on the starting high-purity carbon

material with anvils (8-9 GPa at 2500-2800 K for 5 s). In between a ring-shaped structure

confines the radial press [27]. The starting materials are, in general, graphite discs.

Due to the relatively low price, the HPHT method remains widely used in the cutting

and abrasive industry. In addition, it is used in jewelry for enhancing the properties of

natural diamond.

Chemical vapour deposition

The success of the CVD process in the 1980s rekindled the attention to man-made dia-

mond [28]. In Fig. 2.4, the schema of the CVD process is shown. The process relies on



BORON-DOPED DIAMOND 13

decomposing carbon-containing gas molecules (reactants), such as methane to free rad-

icals, and depositing diamond on a substrate [20]. The presence of hydrogen plays an

important role, as it can remove non-diamond carbon and it can terminate a part of the

carbon ‘dangling’ bonds [22]. As a side effect, hydrogen is present in different complexes in

diamond films. A well-known example of this is trans-polyacetylene [29]. The ionization

of gases (activation) in the reaction chamber can be achieved by microwave power, a hot

filament or by other means [20].

In contrast to the HPHT approach, CVD is preferred in reasearch laboratories, as this

procedure yields significantly lower impurity concentrations. Due to recent improve-

ments [20, 30], longer carrier lifetime and higher drift mobility were observed in CVD

diamond than in “high-quality” natural diamond.

The cost of the CVD method can be reduced by growing nanocrystalline diamond, instead

of bulk single crystals [31]. Several properties of nano-structured diamond are similar to

the bulk material, except for the lower carrier mobility and thermal conductivity [32, 33].

Nanocrystalline diamond possesses a number of advantages, such as, e.g., the applicabil-

ity as nano-electromechanical system devices [11], bio-markers [34] or as single photon

sources [35], and the possibility to grow on several alternative substrates [36]. To achieve

successful growth, a nucleation enhancement step is required on substrates.

2.2.2 Conduction properties

The recent interest in boron-doped diamond (BDD) was initiated by the remarkable dis-

covery of superconductivity in BDD prepared by the HPHT method in 2004 [12]. In the

following, I will briefly review the insulator-metal transition upon boron doping, the su-

perconducting properties of BDD, and the transport properties in the framework of weak

localization.

Insulator-metal transition

In the HPHT approach, substitutional p-type boron doping can be achieved by adding B4C

to graphite. Boron doping with the CVD method relies on adding gaseous trimethylboron

to the methane as a reactant.

When the boron concentration is increased above a critical concentration nc, the insulator

behaviour changes to metallic. Using secondary ion mass spectrometry (SIMS), the critical

concentration is found to be nc ≈ 4−5 ·1020 cm−3 [37], largely depending on the synthesis

procedure.
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Figure 2.5: Illustration of the weak localization. A stable localized electron-wave interference

pattern, called weakly localized orbit circumvents a large scale potential fluctuation [40].

The Mott transition [38] is an insulator-to-metal transition, where a doped semiconductor

becomes a metal. It takes place when the concentration of the randomly distributed boron

reaches nc, and the boron-related states overlap. This is directly related to the Bohr

radius, which reads

aB =
εa0

m∗
, (2.6)

where ε is the dielectric constant, a0 is the Bohr radius in vacuum, and m∗ is the effective

mass in units of me. The critical concentration is expected at aBn
1/3
c = 0.26. With the

usual values (ε = 5.7 and m∗ = 0.74), this simple relation gives nc = 6 ·1020 cm−3 [14, 39],

which is in reasonable agreement with the experimental value of nc.

Normal state

Concerning BDD, one of the most important discussions was on the nature of itineracy

above the critical boron concentration. It was found theoretically that metallic behaviour

is either due to the lightly hole-doped diamond bands [41] or due to the acceptor bands [42].

An angle-resolved photoemission spectroscopy (ARPES) study [13, 43] showed the valid-

ity of the former prediction, i.e., that conduction (and thus superconductivity) is intrinsic

to BDD and that the conduction band is derived from the valence band of diamond.

Below a certain temperature, the normal-state resistivity of boron-doped diamond in-

creases slowly when the temperature is reduced. At this temperature, the inelastic and

the elastic mean free paths are the same order of magnitude. The essence of this effect,

the so-called weak localization (see Figure 2.5) is the constructive quantum interference

of electron waves split and elastically scattered by potential fluctuations. The weak lo-

calization in BDD arises from electron-phonon scattering [14], and it is pronounced and

well-known in nanocrystalline diamond [44].
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The second-order, insulator-to-metal transition in BDD can be described by two crit-

ical exponents, ν and η. The former relates the correlation length (ξloc) to nB as

ξloc ∝ 1/ |nB − nC|ν . η connects the energy and length scales of the system: E ∝ 1/Lη.

Experimentally, η ≈ 3 and ν = 1 were obtained in agreement with the theory [45]. The

scaling behaviour is expected to reduce the density of states as D(EF) ∝ |nB − nC|ν(3−η).

Superconducting state

As pointed out in Sec. 2.2.1, samples produced by the HPHT method show high impurity

concentration. This might suggest that superconducting boron (Tc = 6 K at 175 GPa) [46]

is responsible for the observed superconductivity in BDD. The doubt was first raised by

Ekimov et al. [12] but the opposite pressure dependence of Tc in boron and in BDD con-

tradicted the assumption. Later on, a high-resolution transmission electron microscopy

(HRTEM) study [47] showed evidence that amorphous boron causes superconductivity

and it was claimed that intrinsic superconductivity in BDD was unlikely. The contro-

versy was resolved when superconductivity was confirmed in CVD prepared materials [48].

For materials produced with the microwave plasma enhanced CVD process, a significant

orientation dependence was found, and Tc up to 11 K was measured in (111) oriented

samples [49].

Although it was expected that the Tc in BDD would be increased by additional boron

doping [50, 51], it turned out that boron tends to form boron pairs [52] and hydrogen in

the CVD process effectively passivates the boron acceptors, leading to B-H complexes [53].

In addition, the enhancement of Tc at lower doping levels is explained by the vicinity of

the insulator-metal transition [14].

Several reports [54, 55, 56] confirmed that the BCS approach is valid in BDD. In this

respect, the relatively high Tc for a disordered semiconductor-derived material is due to

the energetic phonons in diamond, which is a stiff material. The type-II superconductivity

(confirmed, e.g., in Ref. [57]) originates from the strong coupling of phonons to the holes

in the diamond bands. The three-dimensional metallic bands couple to three zone-centre

optical phonon modes, in contrast to MgB2, where the metallic bands are two-dimensional

and couple to two optical phonon modes. Despite a very large electron-phonon coupling

potential V for diamond [58], the three-dimensional nature reduces its density of states

compared to MgB2. Therefore, the electron-phonon coupling λ is 0.4-0.5 [50], whereas it

is λ ≈ 1 in MgB2, which results in significantly lower critical temperatures in BDD [22].

Even if superconductivity in doped semiconductors is an intriguing issue for theory [56, 59],

until 2004, it was only observed for GeTe, SnTe and for doped SrTiO3. Following the re-
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sults of Ekimov et al. [12], boron-doped silicon (Tc ≈ 0.35 K [60]) and silicon carbide

(Tc ≈ 1.4 K [61]) were also found to be superconducting.

2.3 Spin dynamics in metals

In the following, I present experimental techniques and theoretical background of spin

dynamics in metals. This leads us to the discussion of spin dynamics in BDD. I present

transport- and spectroscopy-based spin-relaxation techniques, especially the Hanle spin-

precession experiment and the conduction electron spin resonance. Finally, I will discuss

the Elliott-Yafet theory, i.e., the relevant spin relaxation mechanism in metals with inver-

sion symmetry.

2.3.1 Spin transport

Figure 2.6: Schematic view of non-

local quasi one-dimensional Johnson-Silsbee

scheme. F1 and F2 are ferromagnetic contacts

with magnetization in the x − z plane; dot-

ted lines are the equipotentials; gray shading

shows the nonequilibrium spin-polarized elec-

trons [2].

Figure 2.7: Hanle spin-precession exper-

iment in graphene in case of parallel (↑↑,
black curve) and antiparallel (↑↓, gray curve)

magnetizations of the spin-injector and spin-

detector electrodes [62].

To calculate τs, it is plausible to measure time and space correlations in magneti-

zation. E.g. transmission electron spin resonance (TESR) was successfully applied by

Jánossy [63] to determine the propagation of nonequilibrium magnetization of excited

electrons in paramagnetic metals.

In electrical spin-injection experiments, the Johnson-Silsbee scheme [64, 65] is used, as

depicted in the non-local geometry in Fig. 2.6. Therein, the F1 contact injects I current
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toward the grounded left end of the wire, leading to a linear voltage drop from F1 to the

ground. F1 is ferromagnetic, thus, the spin-polarized electrons diffuse in the ±x direction,

with a spin-diffusion length of δspin = vF
√
ττs, where vF is the Fermi velocity and τ is the

momentum relaxation time. As F2 is ferromagnetic as well, electrons with parallel spin

to the magnetization of F2 cause a spin-dependent voltage from F2 to the right end at

x = b. Hence, if the x = Lx position of F2 is varied, the exponential decay of this voltage

could yield δspin and τs.

However, it is a major difficulty to reproduce these devices with different Lx values.

Instead, the zero frequency analogue of the TESR, the so-called Hanle spin-precession

method is employed. There, a magnetic field is applied transverse to the orientation of

the injected spins. The electrons precess under the influence of the field, which provokes

a phase coherence loss for large enough fields. In general, Hanle data (shown in Fig. 2.7)

are fit to a mixture of absorptive and dispersive contributions. These fits to the mag-

netic field dependence provide information on the spin polarization and the spin-diffusion

length [66]. The Hanle method was recently demonstrated in mesoscopic devices [67] and

in graphene [7].

2.3.2 Electron spin resonance

Since its discovery in 1944 [68], electron spin resonance (ESR) spectroscopy has been

proven to be a convenient contactless technique in studying the magnetic properties of

biological and chemical systems. In solid-state physics, ESR became an important method

in identifying the ground state of strongly correlated electron systems [69]. E.g. ESR

characterization was key for the synthesis of phase pure AC60 (A=K, Rb, Cs) [70] fulleride

polymer. This technique was also utilized to examine the spin-relaxation properties of

the conventional superconductor with the highest Tc, MgB2 [71, 72].

A free electron possesses a spin S resulting in a magnetic moment of

µ = −geµB

~
S. (2.7)

Herein, ge = 2.0023(1) is the free electron g-factor, µB = 9.27(4) · 10−24 J/T is the Bohr

magneton, and ~ is the Planck constant. In the absence of a magnetic field, the energy

levels of the two spin quantum states with ms = ±1/2 quantum numbers are degenerate.

If a B0 = B0 ·k external magnetic field is applied to the electron, the degeneracy is lifted.

The energy difference is ∆E = E+1/2−E−1/2 = geµBB0, in agreement with classical elec-

trodynamics.
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In a solid-state, the energy splitting of the electron leads to the so-called Zeeman Hamil-

tonian

Hext = −µ ·B0 = gJµBJ ·B0. (2.8)

gJ is the so-called Landé g-factor, J = L + S is the total angular momentum. Hence, the

energy splitting reads as

∆E = gJµBJzB0. (2.9)

Applying the Ehrenfest theorem for the time dependence of the total angular momen-

tum [73]
d〈J〉
dt

=
i

~
〈[Hext,J]〉 = γ〈J〉 ×B0, (2.10)

where the gyromagnetic ratio γ = 2π · 28.0 GHz/T is introduced, and 〈.〉 indicates the

quantum mechanical expectation value. The equation of motion is similar to the classical

case: the B0 magnetic field produces a torque on the angular momentum, and this results

in a Larmor precession around B0 with ωL = γB0 frequency.

In an ESR experiment, a transition is induced through switching on an alternating mag-

netic field along the x axis: Bx = Bx0 cosωt. This linearly polarized Bx can be analyzed

by breaking it into two rotating components. Close to the resonance, the component

which rotates opposite to the precession of the moment, may be neglected. Without

loss in generality, we assume that the clockwise rotating B1 = B1 [i cos(ωt)− j sin(ωt)]

(B1 = Bx0/
√

2) induces the transition. In the laboratory frame, Eq. (2.10) for the γJ = µ

magnetic moment can be rewritten as

d 〈µ〉
dt

= 〈µ〉 × γ [B0 + B1] . (2.11)

In the frame whose x-axis rotates along B1, it becomes

∂ 〈µ〉
∂t

= 〈µ〉 × [k(γB0 − ω) + iγB1]︸ ︷︷ ︸
Beff

. (2.12)

Clearly, the classical equation is now valid for the Beff effective magnetic field. The reso-

nance condition is satisfied with γB0−ω ≈ 0, i.e., if the frequency of the perturbing field

is equal to the Larmor frequency: ω ≈ ωL.

In the rotating frame, near the resonance, the µ magnetic moment rotates around the x

axis. The magnetic potential energy is, therefore, periodically returned.

Eq. (2.12) discusses the spin-flip without friction, which led to a precession around an

effective magnetic field in the rotating frame. The Bloch-equations [74] consider an ex-

ponential relaxation in the laboratory frame for M = µ/V magnetization components in
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the material:

dMz

dt
= γ(M×B)z +

M0 −Mz

T1

dMx

dt
= γ(M×B)x −

Mx

T2

dMy

dt
= γ(M×B)y −

My

T2

.

(2.13)

B is the effective magnetic field, M0 is the equilibrium magnetization through the z-axis,

T1 is the spin-lattice, and T2 is the spin-spin relaxation time. The longitudinal T1 and

the transversal T2 relaxation times are, in general, different, as the former describes an

energy transfer to a reservoir.

The Bloch-equations can be solved in the rotating frame [73], where the solution for the

in-plane component reads as

M ′
x =

χ0ω0

µ0

T2
(ω0 − ω)T2

1 + (ω − ω0)2T 2
2

B1

M ′
y =

χ0ω0

µ0

T2
1

1 + (ω0 − ω)2T 2
2

B1.

(2.14)

Herein, ′ indicates the solutions in the rotating frame, χ0 = µ0M0/B0 is the static volume

susceptibility, and ω0 = γB0 is the resonance frequency.

Regarding M ′
x and M ′

y as components of a complex function, the solution in the standing

reference frame reads

MC
x = M ′

xe
iωt +M ′

ye
iωteiπ/2. (2.15)

Similarly, the complex function of the perturbing magnetic field is defined as

BC
x = Bx,0e

iωt. (2.16)

Using Eq. (2.15) and Eq. (2.16), the linear response function, i.e., the volume magnetic

susceptibility reads

χ = µ0
MC

x

BC
x

= χ′ − iχ′′. (2.17)

(χ is also called the dynamic susceptibility.) χ′ and χ′′ are the elastic (or dispersive) and

dissipative responses of the system, respectively. These are connected by the Kramers-

Kronig theorem.

Spin susceptibilities

For a material in thermal equilibrium, the Zeeman splitting yields to slight difference in

spin populations due to the Boltzmann law. This population difference is measured by
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the spin susceptibility of the material, which is proportional to the ESR intensity (see

Sec. 4.1.1).

Since a non-interacting spin system is a canonical ensemble, with its energy levels defined

in Eq. (2.9), the free energy reads

F = −NkBT ln

(∑
n

e−βEn

)
, (2.18)

where N is the number of atoms and β = 1/kBT . The component of the volume magne-

tization along the field is

M = − 1

V

∂F

∂B
=
N

V
gJµBJBJ (βgJµBJB0) , (2.19)

where BJ(x) is the Brillouin function. For low magnetic fields, the small-x expansion of

the Brillouin function is: BJ(x) ≈ J+1
J
x/3. For the Curie spin susceptibility, this yields

χ0(Curie) = µ0
N

V

g2
Jµ

2
BJ(J + 1)

3kBT
, (2.20)

where µ0 is the vacuum permeability. In Mn2+, the angular momentum is quenched [73],

and J is replaced by S. In a solid-state, the Landé g-factor, gJ , is substituted by the

g-factor, which takes into account the local field in the sample [75, 76].

In case of conducting samples, the free-electron gas model is valid. In this case, the

electrons obey the Fermi-Dirac distribution

f(ε) =
1

eβ(ε−µ) + 1
. (2.21)

Herein, ε is the energy and µ is the chemical potential. When a B0 magnetic field is

applied, the energy gain (loss) due to the parallel (anti-parallel) spin of the electron is
1
2
gµBB0. This energy difference leads to a surplus of the parallel spins, i.e., paramagnetic

linear response of the metal. Due to the nearly stepwise Fermi-Dirac distribution, the Pauli

spin susceptibility of the conducting samples is proportional to the electronic density of

states at the Fermi level, D(EF):

χ0(Pauli) = µ0
g2

4
µ2

BD(EF)
1

Vc
. (2.22)

Vc is the volume of the unit cell [76]. A dimensional analysis shows that when D(EF) is

measured in units of 1/(energy · unit), χ is dimensionless in SI units, as required.
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Figure 2.8: Schematic of the Elliott-Yafet spin-relaxation mechanism during spin trans-

port [77].

2.3.3 Elliott-Yafet spin-relaxation mechanism

The spin-orbit coupling in atomic physics enters into the Hamiltonian from the 1/c2-

expansion of the relativistic Dirac equation. In central potential, this approach gives

HSO =
ke2

2m2
er

3c2
L·S, (2.23)

where k = 1/4πε0 is the Coulomb constant, me is the free electron mass, and c is the

speed of light. Eq. (2.23) expresses that the moving electron experiences a magnetic field

in its rest frame that arises from the Lorentz transformation of the static electric field.

Elliott [79] showed that the presence of spin-orbit interaction (HSO) leads to Bloch states

which are an admixture of the spin-up |↑〉 and spin-down |↓〉 states with k lattice momen-

tum:

Ψk,↑(r) = [ak(r) |↑〉+ bk(r) |↓〉] eikr

Ψk,↓(r) =
[
a∗−k(r) |↓〉+ b∗−k(r) |↑〉

]
eikr.

(2.24)

Herein a and b are the lattice periodic coefficients written with the explicit dependence

with the radius r. The two degenerate Bloch states can be called Ψk,↑(r) and Ψk,↓(r), as

a ≈ 1 and b is

|b| = λ

∆E
� 1 (2.25)

as shown by perturbation theory. λ is the amplitude of the matrix element of HSO, and

∆E is the energy distance between the band state in question and the state in the nearest

band with the same transformation properties. The g-factor shift, ∆g = g − ge can be

estimated by taking the matrix element of lz on the unperturbed function, so that ∆g is

at the order of |b|:
∆g = α1

λ

∆E
, (2.26)
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Figure 2.9: The original Beuneu-Monod plot showing the connection between (∆g)2 and the

ration of the ESR linewidth and resistivity for pure metals ∆B/%. Solid line and dashed curve

correspond to α1/α
2
2 = 1 and α1/α

2
2 = 10, respectively [78].

where α1 is a constant over unity.

To give an estimate on τs (in metals τs = T1 = T2), the Elliott [79] and Yafet [80]

relations will be discussed. The Elliott relation expresses that the momentum scattering

is proportional to the spin-flip scattering. With the momentum scattering interaction

Hint, the wave functions of Eq. (2.24) yield

|〈Ψk,↑ |Hint|Ψk’,↓〉|2 = |b|2 · |〈Ψk,↑ |Hint|Ψk’,↑〉| . (2.27)

Combining the g-factor shift and τs, the Elliott relation reads

1

τs
= α2

∣∣∣∣akbk
∣∣∣∣2 = α2

(
∆g

α1

)2
1

τ
, (2.28)

where τ is the momentum relaxation time. The estimated τ/τs ratio is dependent on the

scattering mechanism, that is, whether it stems from impurities, boundaries or phonons.

Within the Drude model, the conductivity reads

σ =
1

%
=
ne2τ

m∗
= ε0ω

2
plτ, (2.29)

where n is the electron density, m∗ is the effective mass, and ωpl is the plasma (angular)

frequency. Substituting the ESR linewidth ∆B = 1/γT1 and Eq. (2.29) into Eq. (2.28),

it yields [81]

∆B =
ε0ω

2
pl

γ

α1

α2
2

(∆g)2 · %. (2.30)
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This expression corresponds to the more general Yafet relation

1

T1(T )
∝ |b|2 %(T ), (2.31)

which was justified over a large temperature range even when the temperature dependence

of the resistivity is non-linear, i.e., well below the Debye temperature [2].

The Elliott-Yafet relation (shown schematically in Fig. 2.8) in Eq. (2.30) combines three in-

dependent empirical parameters, ∆B, ∆g, and %, i.e., it is a benchmark of spin-relaxation

experiments in novel metals. Beuneu and Monod [78, 82] verified its validity for elemental

metals. There, the variation of ωpl from metal to metal was neglected and the linear scal-

ing was established between ∆B/% and (∆g)2. Figure 2.9 depicts the Beuneu-Monod plot

for pure metals. α1,2 may vary between 1 . . . 10, and the best fit was found for 1011 G/Ωcm.

The linear scaling of the Elliott-Yafet relation occurs mostly for monovalent materials and

notable exceptions are Be and Mg for which the so-called “hot-spot” model was invoked

by Fabian and Das Sarma to explain the data [83]. The hot-spot model recognizes that

spin relaxation is enhanced for particular points of the Fermi surface. Given that the

spin lifetime is much larger than the momentum lifetime, an electron wanders over large

portions of the Fermi surface before spin relaxation occurs, i.e., the hot spots dominate

the spin relaxation. This effect is pronounced for metals where the Fermi surface strongly

deviates from a sphere.

2.4 CESR signal in metals

ESR is most commonly used for the observation of localized paramagnetic spins (often

termed as electron paramagnetic resonance). Therefore care is required for the identifi-

cation of ESR signal of conduction electrons in metals. Even a small amount of impurity

could hinder the observation of the latter. Notable examples of CESR identifications from

the recent past are the discovery of CESR in Rb3C60 [84], in RbC60 [70], in MgB2 [71],

and in carbon nanotubes [85].

Herein, we give the benchmarks of observing an ESR signal originating from the itinerant

electrons in a metal. In the order of importance [69]:

(a) The value of the measured spin susceptibility should match the Pauli spin suscepti-

bility, which is related to the density of states.

(b) The temperature dependence of the signal intensity should be characteristically dif-

ferent from the Curie dependence (χ(Curie) ∝ 1/T ).
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(c) For a metal with inversion symmetry, the linewidth should increase with increasing

temperature following the Elliott-Yafet relaxation mechanism [79, 86].

(d) The g-factor shift and the ESR line-width should obey the Elliott-Yafet relation.



Chapter 3

Experimental techniques

The bulk properties of BDD as a disordered metal were measured using X-band electron

spin resonance technique. This chapter starts out with a review of the characterization

measurements performed on the BDD samples. Transport measurements were performed

to examine the conduction properties of BDD. Its light scattering properties were inves-

tigated by Raman spectroscopy using visible excitations. Later on, I will introduce the

ESR spectrometer I used.

3.1 Samples and their characterization

Figure 3.1: Scanning Electron Microscope (SEM) image of the surface of the sample prepared

by MPCVD method, consisting of grains of typically 3 µm size.

To prepare our samples1, diamond nucleation was initiated by immersion of clean

1The samples were prepared by Oliver A. Williams.
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Figure 3.2: Transport experiments in BDD (a) Weak localization dominates the temperature

dependence below 150 K. (b) The sample is superconducting below Tc = 3.8 K.

silicon (111) wafers in aqueous colloids of hydrogenated nanodiamond particles in an

ultrasonic bath. Although the growth of diamond on untreated silicon results in nucleation

densities of around 104-105 cm−2 [87], this process is known to produce nucleation densities

in excess of 1011 cm−2 [88]. To acquire p-type boron doping, diamond was grown for 20 h

using microwave plasma enhanced CVD (MPCVD) with 4% CH4 diluted in H2 with

6400 ppm of trimethylboron [33]. Microwave power of 3 kW and substrate temperature

of 800 ◦C yields films of approximately 6 µm thickness. The Si substrate was removed

using a mixture of HF and H2SO4. The former oxidizes Si, the latter removes SiO2.

Figure 3.1 depicts the SEM image of our material2. The average diameter of the grains

is 3 µm, which is consistent with the nucleation density of ' 1011 cm−2.

Figure 3.2 shows transport measurements in our sample. Figure 3.2(a) exhibits an increase

in resistivity with decreasing temperature below 150 K. Earlier reports [39, 44, 45] suggest

that weak localization is responsible for this behaviour. Figure 3.2(b) indicates the onset of

superconductivity at 3.8 K. Superconducting properties of similar nanocrystals of boron-

doped diamond are analyzed in Ref. [11]. Tc ≈ 4 K usually corresponds to a boron

concentration of n ≈ 1021 cm−3 (or ∼ 6000 ppm) according to the calibration established

for samples prepared with chemical vapour deposition [49, 53].

In Fig. 3.3, the Raman spectrum of heavily boron-doped diamond (BDD) is depicted at

λ = 532 nm.

The Raman bands around 500 cm−1 (denoted by BB-1 and BB-2 in Fig. 3.3), were assigned

to boron dimers [52, 89, 90], to clustered boron atoms [90], and to amorphous diamond [91].

2SEM and transport measurements were performed by Soumen Mandal and Christopher Bäuerle.
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Figure 3.3: Raman spectrum of BDD at λ = 532 nm. Labels denote the boron dimers or point

defect states (BB-1 and BB-2), the peaks due to the maxima of the phonon density of states

(PDOS-1, PDOS-2), and the zone-center phonon line (ZCP). Solid Lorentzian (BB-1, BB-2,

PDOS-1 and PDOS-2) and Fano (ZCP) lines show the fit for the spectrum.

Isotopic substitution did not give satisfying identification of the origin of the feature as

both boron and carbon substitution gives shift on Raman spectra [90]. The controversy of

the interpretation might be resolved by regarding boron dimers to be point defects present

in BDD in high concentration. The defect concentration correlates with the incorporated

boron concentration, which reaches its maximum on the surface of the nanocrystals [92].

Due to the inhomogeneous distribution of boron atoms [93], BDD does not obey the

Raman wavevector conservation rule and yields similar Raman spectrum for BDD as for

amorphous diamond.

The peak was fitted with the sum of two Lorentzian components (fit shown in Fig. 3.3), as

opposed to a Lorentzian and a Gaussian component in Ref. [89]. The empirical relationship

between the Raman shift of the lower Lorentzian component and the boron content (n)

measured by secondary ion mass spectrometry (SIMS) found in Ref. [89] yields nB ≈
1.8 · 1021 cm−3 for the boron content in the sample. The approximate agreement between

SIMS results and the fit further proves that the mode might be due to the high boron

dimer concentration.

The Raman band around 1000 cm−1 (PDOS-1) originates from the maximum of the

phonon density of states of diamond. As discussed above, defects in the material make

the otherwise forbidden states allowed [94]. The Raman structure around 1200 cm−1
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consists of two components: a Lorentzian-like at 1210 cm−1 and another one with an

asymmetric lineshape around 1300 cm−1. The 1210 cm−1 (PDOS-2) mode appears due

to the presence of defects [90, 95], or due to boron-carbon complexes [96].

The zone center optical phonon of diamond, which occurs at 1332 cm−1 with γ = 1.2 cm−1

linewidth [97], is shifted to 1300-1313 cm−1 in BDD and acquires a Fano lineshape due to

the presence of free charge carriers [96, 98].

In Fig. 3.3, a Fano lineshape is shown fitted on the Raman spectrum. The Fano lineshape

[99] originates from the quantum interference between the zone-center optical phonon and

a continuum of electronic transitions around the same energy. It can be calculated as

Int(ω) ∝
[
q +

(
ω−Ω0

Γ

)]2
1 +

(
ω−Ω0

Γ

)2 , (3.1)

where Int(ω) is the intensity of the Raman signal, ~Ω0 and ~Γ are respectively the real

and imaginary parts of the self-energy in BDD after coupling between discrete phonon

transition and a continuum of states. If the electronic continuum disappears, and q →∞,

the Fano formula becomes the usual Lorentzian curve. The asymmetry parameter q

conveys information on the Raman scattering amplitude of the decoupled phonon Tp and

the electronic continuum Te. The fit yields q ≈ −1.4 and evidences an anomalously low

value for Tp/Te [96, 100].

3.2 ESR spectrometer setup

ESR measurements in BDD were carried out on an X-band Bruker Elexsys E500

spectrometer3. Temperature in the 5-300 K temperature range is controlled by a (liquid

helium) continuous flow Oxford cryostat. To present a typical setup, I will follow the

path of the microwave (MW) radiation, with special care to the resonant cavity.

In Fig. 3.4, the scheme of an X-band ESR spectrometer is shown. The X-band MW

radiation (∼ 9.4 GHz) is generated by the MW source, a Gunn diode, with a power of

200 mW. The output of the diode is transmitted toward the detector using waveguides.

The electromagnetic radiation is split up to three parts: a small portion is sent to the

frequency counter, the second is transferred to the MW cavity, and the rest acts as a

reference signal. The two latter parts reach attenuators, which reduce the amplitude of

the signal4.

3Laboratory of Physics of Complex Matter, École Polytechnique Fédérale de Lausanne
4As a side effect, the signal phase changes as well.
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Figure 3.4: Schematic diagram of an X-band ESR spectrometer [101].5

The second component, i.e., the signal sent to the MW cavity, gets into the circulator.

This multiterminal network transmits power entering the ith arm to the (i+1)th arm [102],

thus, the power sent to and leaving the MW cavity can be transmitted through the same

waveguide.

The resonant cavity functions as an impedance-matched load. In our cylindrical cavity, the

MW cavity sustains the TE011 mode. This electromagnetic field configuration is the result

of standing waves with no net energy flow. The dimensions of the cavity correspond to the

wavelength (∼ 3 cm) of the microwaves. The frequency characteristics of the resonator

can be displayed by sweeping across the resonator bandwidth. If the resonant frequency is

within the frequency range swept, a dip shows up on an oscilloscope. The sharpness of the

response of the resonant system is described by a figure of merit, the quality factor defined

by Q = ν/∆ν. Herein, ν is the resonance frequency and ∆ν is the bandwidth. Differently,

the Q factor can be interpreted based on the efficiency of the energy storage [103]

Q = 2π
E(stored in the resonator)

E(dissipated by the resonator per MW cycle)
. (3.2)

The impedance matching of the cavity to the waveguide, which is also called the critical

coupling, is found screwing a metallic partition, which extends partially across the waveg-

uide (in a plane perpendicular to the direction of propagation): the iris. During the ESR

5The diagram is valid for a modified JEOL spectrometer (Department of Physics, BME). In the Bruker

spectrometer, the field controller and the Hall sensor are connected to get feedback on the magnetic field

value.
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measurements, the load-line conditions are maintained by the automatic frequency control

unit (AFC).

If the sample, positioned in the magnetic field maximum (B1) in the resonant cavity,

suffers an electron spin-flip, a minuscule power is reflected from the cavity. The reflected

signal reads

dE = dE0e
i(ωt+ϕ) = CB1(χ′ − iχ′′)V ei(ωt+ϕ) (C constant), (3.3)

where V is the volume of the cavity. This reflection and the reference signal are summed

with the magic tee coupler (resulting in a factor of two loss). In order that constructive

interference be fulfilled, the phase of the reference arm (E = E0e
i(ωt+ϕ0)) is set with a

phase shifter (denoted as ϕ in Fig. 3.4). The signal intensity at the detector diode is

related to ϕ0 phase as

Idet ∼ |E + dE|2 = E2
0 + 2 · E0B1V (χ′ cos(ϕ− ϕ0) + χ′′ sin(ϕ− ϕ0)) +O(dE2). (3.4)

By setting ϕ = ϕ0 + 90◦, χ′′, the dissipative answer is measured.

In an ESR experiment, the B0 magnetic field is swept in the electromagnets and the ω

frequency is regarded constant in contrast to the method described in Sec. 2.3.2. Due to

hysteresis, the magnetic field controller requires a feedback from the Hall effect sensor.

The signal-to-noise ratio is increased applying a lock-in amplifier. The radio frequency

modulation, demanded by the lock-in technique, is ensured by the modulation coils. The

frequency of the Bmod modulation is ∼ 100 kHz. Then, Eq. (3.4) can be rewritten as

ILock-in ∼
dIdet

dB

∣∣∣∣
B0

Bmod +O(B2
mod) ∼ dχ′′

dB

∣∣∣∣
B0

V
√
PBmod +O(B2

mod), (3.5)

where P is the MW power. The measured ESR signal is therefore dχ′′/dB, which is a

derivative Lorentzian curve (cf. Eq. (2.14) and Eq. (2.17)).

3.2.1 The Dysonian lineshape

The phenomenological Bloch equations led to a Lorentzian ESR lineshape. In contrast

to our above consideration, the amplitude of the magnetic field decays exponentially in

conducting materials. The characteristic length scale is the penetration depth (δ), which

reads

δ =
√

2/µ0ωσ, (3.6)
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where µ0 is the permeability of the vacuum, ω is the angular frequency of the exciting

microwave, and σ is the conductivity. The time it takes to diffuse through the skin depth

is TD, which is defined by δ = vF

√
τTD/d, where vF is the Fermi velocity, τ is the mo-

mentum relaxation time, and d = 3 is the dimensionality.

Dyson [104] showed that the lineshape in metals depends on the ratio of the skin depth

(δ) to the thickness of the sample (d): λ = d/δ. As the excited electrons can diffuse in

and out of the skin depth, the ratio of TD and the relaxation time T1 (which is equal to

T2 in metals), R2 = TD/T1 is also an important parameter.

In the seminal paper of Feher and Kip [105], several cases of Dyson’s formula are distin-

guished. The relevant limit in our case (see Sec. 4.1) is R → ∞ and λ → ∞, that is,

TT � TD and TD � T1, where TT is the time it takes for an electron to diffusively traverse

the sample. With the spin-diffusion length of δspin = vF

√
τT1/d, the TD � T1 condition

is equivalent to δ � δspin. This is “the thick plate case with slowly diffusing magnetic

dipoles”.

For this situation, the ESR signal can be expressed as a sum of dispersion (fdisp) and

absorption (f abs) Lorentzian lines:

P ∝ cosϕ · f abs(B −B0, w) + sinϕ · fdisp(B −B0, w), (3.7)

where B is the magnetic field, B0 is the resonance magnetic field, w is the linewidth, and

ϕ = 45◦.



Chapter 4

Results and discussion

In this chapter, I will present my ESR measurement results in superconducting BDD

(Tc = 3.8 K). The validity of the benchmarks of the conduction electron spin resonance

signal will be analysed. I will discuss the validity of the Elliott-Yafet theory of spin

relaxation in BDD.

4.1 Electron spin resonance in BDD

The critical temperature in our sample is Tc = 3.8 K (See Sec. 3.1), thus, all measurements

are performed in the normal state. Resistivity in BDD is pretty large above Tc, so the

quality factor of the microwave cavity does not decrease substantially. To enhance the

broad resonance signals and also to eliminate any spurious background signals from the

cavity or the cryostat, one needs to employ large magnetic modulation.

The low- and high-temperature ESR measurements in BDD significantly differ. A typical

low-temperature spectrum (at 35 K) is shown in Fig. 4.1(a). Due to using derivative

signals in ESR (see Sec. 3.2), the signal amplitude of Lorentzian lines drops as 1/(∆B)2,

where ∆B is the linewidth. Thus, the integration visually enhances the broader compo-

nents [84]. In Fig. 4.1(b), the integrated spectrum is displayed confirming the presence

of three different ESR signals. In the following, I refer to these as B [gB = 2.003(1)], C

[gC = 2.003(1)], and D [gD = 2.016(1)]. It is notable that B and C reveal a substantial

asymmetry, whose origin will be discussed below.

Figure 4.2 illustrates the evolution of the ESR spectrum above 75 K. The intensity of the

narrow line, which is the superposition of the B and C signals, decreases with increas-

ing temperature. Nevertheless, the intensity of a broad component with resonance field

B0 ≈ 310 mT does not change significantly.



ELECTRON SPIN RESONANCE IN BDD 33

Figure 4.1: (a) The measured raw, derivative ESR spectrum of BDD at 35 K. (b) The integrated

ESR spectrum (Exp.) and a fit (Fit), and the fitted components. The three components (B, C,

and D lines) probably originate from carbon dangling bonds accompanying hydrogen-vacancy

complexes (cf. Sec. 4.1.1). Note that the C signal is slightly asymmetric because of the finite

penetration depth.

In Fig. 4.3, the derivative (Fig. 4.3(a)) and integrated (Fig. 4.3(b)) signal at 175 K is

depicted in order that the broad line be more discernible. The broad component will be

denoted as A [gA = 2.16(3)]. The comparison of Fig. 4.1(a) and Fig. 4.2 evidences that

the deconvolution of the ESR spectra into several components varies in the different tem-

perature ranges. The D signal can be followed up to 75 K, however, starting from 75 K

the fit converges to the signal A. At 75 K the two signals can be fitted independently. To

prove that the A signal stems from the itinerant electrons in BDD, I will investigate the

validity of the sound benchmarks distinguished in Sec. 2.3.3.

The A signal exhibits a significant asymmetry, and is best fitted with ϕ ≈ 45◦ of Eq. (3.7),

which is an equal mixture of absorption and dispersion Lorentzian lines. Remarked in
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Figure 4.2: ESR spectra of BDD at different temperatures. Note the broad ESR line (denoted

by asterisk) which is assigned to the conduction electrons. The sharp ESR line originates from

localized defect spins.

Sec. 3.2.1, the ESR lineshape corresponds to the thick plate case. This is known as the

“NMR limit” of spin diffusion of the Dysonian lineshape [105].

As I pointed out in Sec. 3.2.1, the conditions of the validity of the ϕ ≈ 45◦ case are

TT � TD and TD � T1. The latter expression is equivalent to δ � δspin, where δ is

the penetration depth and δspin is the spin-diffusion length. Using Eq. (3.6) and room-

temperature resistivity data in nanocrystalline diamond from Ref. [44], the penetration

depth is estimated to be δ ≈ 31 µm.1 At low temperature, δ ≈ 33 µm is calculated.

From the ESR linewidth, T1 ≈ 0.2 ns. With the Fermi velocity (vF(BDD2) ≈ 1.1·106 m/s)

and momentum relaxation time (τ(BDD2) = 5.1 fs) from an ARPES2 study in Ref. [13],

the spin-diffusion length is δspin(BDD2) ≈ 0.6 µm. These estimated values show that

the condition δ � δspin holds. Note that the momentum relaxation time from the Drude

model yields a similar value.

Figure 4.4(a) depicts the ESR linewidth of both A and D signals as a function of tem-

perature. The linewidth of A is 10 mT larger than that of D at T = 75 K. Hence, it

confirms that the A and D signals have different origins. Below 75 K the A signal cannot

be resolved, whose origin is unexplained. We speculate that this effect is caused by weak-

localization (WL) (see Sec. 2.2.2, and Sec. 3.1), which may either lead to a sudden line

1This gives a lower bound for the penetration depth, as inter-grain interactions increase the resistivity.
2Angle-resolved photoemission spectroscopy
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Figure 4.3: ESR spectrum of BDD at 175 K:

(a) derivative signal; (b) integrated ESR sig-

nal. A fit (Fit) with three components (A, B,

and C ) simulates well the experiment (Exp.).

Note the two narrow signals (B and C ) and

the broader component (A) coming from the

conduction electrons.

Figure 4.4: (a) ESR linewidth of the A and

D ESR lines as a function of temperature.

(b) Spin susceptibility as obtained from the

ESR signal intensity (A: N, B : ., C : ◦, and D :

�) as a function of temperature. The result

for A is magnified for better visibility. Note

the Curie temperature dependence for B, C,

and D.

broadening or a loss of spin susceptibility. It is known that WL becomes significant in

BDD below around 100-150 K [45], which supports that the change of the ESR signal of

itinerant electrons and WL may be related. The linewidth of the A signal weakly increases

with temperature and it has a sizable residual value. These observations are in agreement

with the Elliott-Yafet theory of spin relaxation [79, 86]. In addition, the ∆g is positive

for BDD, which is compatible with hole nature of charge carriers in BDD [73].

In Fig. 4.4(b), the spin susceptibility of the four ESR signals are shown. B, C, and D

exhibit a Curie (χs ∝ T−1, as seen in Sec. 2.3.2) temperature dependence which is charac-

teristic for localized, paramagnetic centers. The ESR intensity of A increases by a factor

two in the temperature range of 75 K to 300 K. This increase rules out that this signal

would originate from localized spins. Instead, its most probable origin is the itinerant con-

duction electrons in BDD. A similar increase of the CESR signal intensity with a factor of
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Figure 4.5: ESR spectrum of a mixture of BDD and Mn2+:MgO powder at room temperature.

The closely equidistant sextuplet comes from the |−1/2〉 → |1/2〉 Zeeman transition of Mn2+.

The broader central line is the C signal in BDD.

2-3 was observed in granular MgB2 samples in the 40-300 K temperature range [71, 106].

Therein, this effect was explained by the limited microwave penetration in the metallic

grains: on increasing temperature the microwave penetration depth increases due to the

increasing resistivity thus resulting in an increasing CESR signal.

4.1.1 Spin susceptibility and the DOS

The ESR intensity calibration allows the measurement of the density of states at the

Fermi level in metals.

ESR spectroscopy measures the net amount of magnetic moments, which is proportional to

the sample amount. In order to gain information on the corresponding intensive variable,

the spin susceptibility, the ESR intensity of an unknown material must be calibrated

against a Curie-spin system with known amount of spins [69].

The spin susceptibilities (calculated in Eq. (2.20) and in Eq. (2.22)) are related to the

ESR intensity as

IESR ∝
∑

m = Bresχs · n, (4.1)

where n is the amount of the sample and Bres is the magnetic field of the resonance.

According to Eq. (3.5), which takes into consideration the instrumental parameters, the

ESR signal intensity reads

IESR ∝
∑

m = Bresχs · n
√
PBmod, (4.2)
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where P is the microwave power and Bmod is the modulation amplitude. Nevertheless, it

is convenient to measure the mixture of the Curie spin system and the unknown material,

thereby eliminating the instrumental parameters.

The comparison of the ESR intensity of an unknown material to a known amount of Curie

spins yields
χs(Unknown)

χs(Curie)
=
IESR(Unknown)

IESR(Curie)
· n(Curie)

n(Unknown)
. (4.3)

As an example, let us assume a S = 1/2 Curie spin system. The ESR intensity calibration

of an unknown material with itinerant electrons leads to (gPauli, gCurie ≈ 2)

IESR(Pauli)

IESR(Curie)
= kBTD(EF)

n(Pauli)

n(Curie)
. (4.4)

Eq. (4.4) can be used to determine the DOS at the Fermi energy, D(EF).

Figure 4.5 displays the ESR spectrum of mixed Mn2+:MgO and BDD powder. The spec-

trum is a superposition of the sextuplet of Mn2+:MgO (Bres(Mn2+:MgO) = 336.6 mT)

and the C signal of BDD (Bres = 336.3 mT).

The spin concentration of Mn2+:MgO due to Mn2+ ions (S = 5/2, L = 0) is known

to be 1.5 ppm. The only observable Zeeman transition of Mn2+ is |−1/2〉 → |1/2〉
which yields the effective 〈S(S + 1)〉Mn2+ = 9/4. Eq. (2.20) gives χs(Mn2+ : MgO) =

5.63 · 10−9 emu/mol for the molar spin susceptibility of Mn2+:MgO. Eq. (4.3) yields

χs(C) = 1.6 · 10−7 emu/mol for the spin susceptibility of the C signal at room tempera-

ture.

The low modulation amplitude and low microwave power employed for the measurement

in Fig. 4.5 is too low for resolving the other signals, especially the CESR (A) signal.

Therefore, the spin susceptibility of the other signals in BDD is determined indirectly,

i.e., the comparison of the C signal and that of A, B, and D gives the correspond-

ing χs. The analysis yields χs(A) = 1.3(3) · 10−7 emu/mol = 1.1(3) · 10−8 emu/g,

χs(B) = 1.6(3) · 10−7 emu/mol, and χs(D) = 4.8(9) · 10−7 emu/mol at room temper-

ature.

Assuming spin-1/2 paramagnetic impurities, their spin concentrations are 0.6 ppm

nimp(C) ≈ nimp(B) ≈ 1017 cm−3 and 1.8 ppm nimp(D) ≈ 3 · 1017 cm−3.

The spin concentration of the defects is in good agreement with bulk carbon dangling

bond defects accompanying hydrogen-vacancy complexes found both in weakly boron-

doped and as-grown CVD diamond [107, 108, 109, 110].

This accordance points to the fact that the quantity of these bulk defects mainly depends

on the CH4/H2 ratio used for the growth of BDD [110]. The CH4/H2 ratio controls the

grain size [111] and modifies the surface-to-bulk ratio. As the hydrogen concentration is
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Figure 4.6: Density of electronic states in BDD versus Tc. Experimental DOS of the present

work (◦) is shown together with DOS calculated from the ARPES measurements in Ref. [13]

(�). Error bar in our experiment is a conservative estimate and considers the uncertainty due

to the limited microwave penetration depth.

higher on the grain boundaries [92], the defect concentration is expected to have a maxi-

mum there. The high concentration of defects within the penetration depth explains the

asymmetry of the C signal at low temperature.

Regarding the CESR signal, the value of χs(A) corresponds to a DOS of D(EF) =

4(1) states/(eV·C-atom). This value is about two orders of magnitude lower spin suscepti-

bility as compared to other metallic carbon phases such as, e.g., K3C60 (χs ≈ 10−6 emu/g,

Ref. [112]) or the KC8 alkali intercalated graphite χs ≈ 6.4 · 10−7 emu/g (Ref. [113] and

Ref. [81]). This difference stems from the significantly lower carrier density in our sample

(n ≈ 1.1 · 1021 cm−3). As an important benchmark of the CESR, the above calculated

DOS value is correlated to theoretical estimates and other experimental results.

The density of states in the Fermi-gas model only depends on the free carrier concentration

(n) and the band effective mass (m∗) through the Fermi wavenumber: kF = (3π2n)1/3.

The corresponding Fermi energy is EF = ~2k2
F/2m

∗. The present nominal carrier density

with the free electron mass [12] corresponds to a Fermi energy of EF = 0.39 eV. The DOS

at the Fermi energy reads:

D(EF) =
1

2π2

(
2m∗

~2

)3/2√
EF

1

%
, (4.5)
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in units of states/eV · C-atom, where % = 1.76 · 1023 C-atom/cm3 is the atomic density

of diamond. This gives D(EF) = 2.4 · 10−2 states/eV · C-atom.

Density functional theory (DFT) calculations3 within the rigid band approximation were

also performed (detailed in Appendix A). n ≈ 6400 ppm boron content yields D(EF) =

3.6 · 10−2 states/(eV · C-atom).

These theoretical estimates show a significantly larger density of states. Therein, the

nominal boron concentration of the MPCVD process was used, i.e., these do not take into

consideration the tendency of boron dimer formation (see Sec. 3.1) [52].

In order to calculate the DOS from angle-resolved photoemission spectroscopy (ARPES)

measurements [13], the Fermi surface is regarded. Within the Fermi-gas model, the density

of states can be rewritten as

D(EF) =
1

π2

k2
F

vF~
1

%
, (4.6)

where vF is the Fermi velocity. The given values of vF and kF from Ref. [13] for ’BDD2’

(Tc = 2.5 K) and ’BDD3’ (Tc = 7 K) samples give D(EF) = 3.9 ·10−3 states/(eV ·C-atom)

and D(EF) = 7.8 · 10−3 states/(eV · C-atom).

Figure 4.6 depicts the DOS value of our sample and those determined from ARPES

measurements as a function of Tc. The empirical comparison can be justified by the BCS

equation Eq. (2.1). The good agreement between the experimental values confirms the

relevance of the boron dimers. In addition, the low DOS values reason the difficulty to

increase Tc in BDD to the highest predicted value of 55 K [51].

4.2 Validity of the Elliott-Yafet relation

In the following, I discuss the validity of the Elliott-Yafet relation in BDD using the cor-

rected Beuneu-Monod plot. In the original Beuneu-Monod plot [78] presented in Sec. 2.3.3,

the linear scaling was established between ∆B/% and (∆g)2. Herein, a corrected scaling

is used which takes into account the variation of ωpl among metals [81], finding a linear

scaling between ∆B/%ω2
pl and (∆g)2.

In Fig. 4.7, the corrected Beuneu-Monod plot is shown together with the present results

for BDD. Clearly, BDD lies out of the general trend observed for most metals. The gran-

ularity of BDD samples hinders measurement of the intrinsic % [114], which leads to an

overestimate of the resistivity and can contribute to the anomalous position of BDD in

the Beuneu-Monod plot.

As remarked in Sec. 2.3.3, the spin relaxation in polyvalent metals like Be and Mg was

3DFT calculations were performed by János Koltai.
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Figure 4.7: γ∆B/%ε0ω
2
pl as a function of ∆g2 (corrected Beuneu-Monod plot [81])for elemental

metals [78] (•) and BDD (N). The resistivity data for BDD is taken from Ref. [44]. Solid and

dashed lines correspond to α = 1 and 10, respectively. We use a plasma frequency of ωpl = 0.8 eV

after Ref. [54].

explained in the “hot-spot” model [83]. The anomalously long T1 measured in BDD might

be caused by a similar effect.



Chapter 5

Summary

In this Master’s thesis, I presented a summary of my Master’s research project on the

spin-relaxation properties of superconducting boron-doped diamond (BDD).

The thesis provides an overview of the studied material, the theory of the superconduc-

tivity in BDD, the theoretical and experimental aspects of spin dynamics in metals, the

instrumentation, and the characterization of the samples.

The presented ESR measurements indicated three different paramagnetic centers with

2.2 ppm spin density. At high temperature (above 75 K), a fourth signal was identified,

which is assigned to conduction electrons in BDD. The identification of the CESR signal

was based on the temperature dependence of the ESR signal intensity and its absolute

magnitude, which is related to the density of states at the Fermi level. The low DOS

value found herein is in agreement with ARPES measurements.

The validity of the Elliott-Yafet spin-relaxation mechanism was discussed in BDD. An

anomalous relationship was observed between the g-factor and the spin-relaxation time,

which calls for further theoretical studies. The observed spin-relaxation rate is orders of

smaller than the conventional theory predicts, which enhances the application potential

of boron-doped diamond for spintronics.

My work on this project resulted in a published paper [1], a poster presentation at

IWEPNM 2012, and a conference proceedings [100].



Appendix A

DFT calculations

Figure A.1: Density of states calculated with DFT methods. (a) Density of states of neutral

diamond as a function of number of electrons per unit cell (solid line) within LDA approximation.

Density of states with optimized geometry upon adding extra charges to the system (�) (b) Zoom

on the calculated DOS for neutral diamond. The charge state for our BDD sample is labeled by

arrow at 7.9872.
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Density functional theory calculations1 (DFT) with the Vienna ab initio Simulation

Package (VASP) [115] within the local density approximation (LDA) were also performed

to calculate the density of states of neutral diamond (see Fig. A.1). The projector

augmented-wave method was used with a plane-wave cutoff energy of 750 eV and a

k-point set of 30×30×30 Γ-centered Monkhorst-Pack grid.

A series of geometry optimization and density of states calculation with extra charges

added (removed) from the system were also performed. The results are shown in

Fig. A.1(a). The agreement between the DOS calculated for neutral and charged dia-

mond firmly supports the validity of the rigid band approximation at low doping levels.

The boron content of 6400 ppm yields D(EF) = 3.6·10−2 states/(eV·C-atom) for the DOS.

1DFT calculations were performed by János Koltai.
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T. Klein, “Metal-to-insulator transition and superconductivity in boron-doped dia-

mond,” Philos. T. Roy. Soc. A, vol. 366, no. 1863, pp. 267–279, 2008.

[15] M. Tinkham, Introduction to superconductivity. Krieger Publishing Company, 1975.

[16] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Theory of superconductivity,” Phys.

Rev., vol. 108, pp. 1175–1204, 1957.
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