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Diplomatéma cime: Spintronikai alkalmazdsok motivélta 1j, szénalapi nanoanyagok
szintézise és szilardtest-spektroszkdpiai vizsgdlata

Melyik szakiranynak ajanlott? “Kutatofizikus”

A jelentkezo6vel szemben tamasztott elvarasok: Kitarto, szorgalmas munkavégzés,
affinitds a kisérleti munka irant, stabil elméleti alapok

Leirasa: A spintronika a modern szilardtestkutatas és anyagtudomany egyik legizgal-
masabb teriilete. A spintronikai alkalmazasokhoz elengedhetetlen 1ij és 1j anyagok el6al-
litasa és ezek vizsgalata a spin relaxacios idék nagysaganak szempontjabol. Utdbbit
elektronspin-rezonancia spektroszképia modszerrel valdsitjuk meg. A spintronikai alkal-
mazasok szempontjabdl felmeriilt anyagok a szén nanocsovek, a grafén és a bérral dépolt
gyémant. A jelentkezo feladata i) alkdli atomokkal dépolt szén nanocsovek és grafén elG4l-
litasa, ii) ezen anyagok magneses és vezetési tulajdonsdgainak mérése ESR-~ és Raman-
spektroszképiai mérésekkel, iii) borral dépolt gyémanton végzett hémérsékletfiiggé ESR-
mérések elvégzése és ezek értelmezése. A jelentkezd érdeklodésétol fiiggen lehet az i-iii

feladatok koziil a hangsulyt bizonyosakra helyezni a dolgozatban.
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Kivonat

Az elektron toltésének és spinjének manipulalasan alapuld spintronika az anyagtudomanyt
és a szilardtestfizikat leginkdabb egyesito tudomanyteriilet. Habar a spintronikai alkalma-
zésok els6 példai, a merevlemez-olvaséfejek mar fellelhetéek szamitégépeinkben (2007-es
fizikai Nobel-dij), a multidiszciplina szdmos jelent6s jovobeli alkalmazési lehetéséget kindl,
amelyekkel kivalthatjuk elektronikai eszkozeinket. A spintronikai eszkozok eloallitdsahoz
harom alapveté kovetelmény adhatd: spinpolarizalt aram eldallitasa; a spin-relaxacios
jellemzok ismerete; és a spin detektalasa.

Az MSc diplomamunkamban egy nemrégiben felfedezett szupravezeto, a borral dépolt
gyémant (BDD) spinrelaxéciés tulajdonsdgait vizsgdlom elektronspin-rezonancia spek-
troszkopiaval (ESR). Egy 6400 ppm bérral dépolt gyémant (7. = 3.8 K) mintan azonosi-
tom a vezetési elektronok ESR-jelét (CESR) normal éallapotban.

A dolgozat roéviden oOsszefoglalja a BDD szokatlan fizikai tulajdonsigait, koztiik a
szigetelO-szupravezetd atmenetbdl eredd jellemzo6it. A magneses rezonancia és a vezetési
elektronspin-rezonancia elméletét fenomenologikusan targyalom.

A CESR jellemz6it azonositom a BDD-ben: (i) az ESR-intenzitds karakterisztikusan
eltér az 1/T-jellegli Curie-hémérsékletfiiggéstél; (ii) az allapotsiirliség Gsszhangban van
fotoemissziés mérésekkel; (iii) a vonalszélesség enyhén novekszik a hémérséklettel, tel-
jesitve a fémek spinrelaxaciéjanak Elliott-Yafet-elméletét. Az empirikus Elliott-Yafet-
relaciéo Beuneu-Monod-abrajat alkalmazva anomalis Gsszefiiggést allapitok meg a g-faktor
eltolédés, a CESR vonalszélesség és az ellenallas kozott, amely szokatlanul nagy spinre-
laxdcios idére (T4) utal a bérral dépolt gyémantban.

A bemutatott eredmények jelentos része nemrégiben megjelent a Phys. Rev. B folydirat-
ban [1].



Abstract

Spintronics, i.e., the manipulation of spin and charge degrees of freedom of electron creates
the closest link between materials science and solid-state physics. The earliest examples of
spintronic applications are present in our computers as read heads of hard drives (Nobel
Prize in Physics in 2007). Nevertheless, this multidisciplinary field possesses an immense
potential to replace all electronic devices by their spintronic counterpart. To make useful
devices, three fundamental issues are to be adressed: polarization of a spin ensemble;
spin-relaxation properties; and detection of the spin.

In my Master’s thesis, I investigate the spin-relaxation properties of a recently discov-
ered superconductor, boron-doped diamond (BDD) using electron spin resonance spec-
troscopy (ESR). The electron spin resonance of itinerant electrons (CESR) is observed in
a 6400 ppm boron-doped sample (7. = 3.8 K) in the normal state.

This work gives a short summary of the unusual physical properties of BDD, especially
those arising from the insulator-superconductor transition. The theory of magnetic reso-
nance and that of the CESR are phenomenologically discussed.

The benchmarks of CESR are identified in BDD: (i) the ESR signal intensity charac-
teristically differs from the Curie (i.e., 1/T") temperature dependence; (ii) the density of
states matches the value based on photoemission spectroscopy measurements; and (iii)
the ESR linewidth displays a slight increase with increasing temperature in accordance
with Elliott-Yafet theory of spin relaxation. Using the Beuneu-Monod plot of the empir-
ical Elliott-Yafet relation, an anomalous relation is found between the g-factor shift, the
CESR linewidth, and the resistivity. The latter result indicates an unexpectedly large
spin-relaxation time (7).

Results presented herein were recently published in Phys. Rev. B [1].



Chapter 1
Introduction and motivations

Limitations of today’s electronics might be overcome with using the spin degree of free-
dom, which is the core principle in the field of spintronics®. For spintronic applications, an
effective way of spin polarization, spin injection, control on spin relaxation, and error-free
spin detection is needed [2].

To generate spin-polarized current and to detect it, the re-discovered spin Hall effect
(SHE) has become a standard tool within a decade [3, 4]. The SHE, which originates
from the spin-orbit coupling, deflects the electrons perpendicular to the current in a spin-
dependent way, and inversely, spin current induces a perpendicular electric current [5].
To effectively manipulate information in spintronic devices, the spin-relaxation time, T,
should be in the range of 10ns. .. 1 us. An often cited concept is that “pure materials made
of light elements” might approach this limit [6]. (Nevertheless, the recent observation of
unexpectedly low T, in graphene [7] contradicted this rule of thumb.)

The diversity of carbon materials gives rise to a remarkable range of applications. Dia-
mond, the three-dimensional allotrope of carbon is widely used in the industry due to its
superlative properties, such as, e.g., the mechanical stability and the large mobility [8].
It has been proposed that diamond is appropriate for quantum information processing
applications [9, 10] and for nano-electromechanical (NEMS) devices [11]. The weak spin-
orbit coupling of carbon makes it a viable candidate for future spintronic applications.
Boron-doped diamond (BDD) is an example of Mott’s metal above the threshold boron

concentration n. = 4 — 5- 10 ¢cm™

. The experimental discovery of superconductivity
in BDD in 2004 [12] came as a major surprise to the research community working on

diamond. It has been proven that superconductivity arises from the lightly hole-doped

!The term was coined by S. A. Wolf in 1996, as a name for a DARPA initiative for novel magnetic

materials and devices.



diamond bands [13], and an increase of the superconducting critical temperature can be
achieved by additional doping [14]. As BDD might be relevant for future spintronics, a
spin-relaxation study is required. Herein, I study the electron spin resonance in BDD to
determine T;.

In this thesis, I present the theoretical background and results of my work. In Chapter 2, I
introduce the basic concepts of superconductivity and the studied material, boron-doped
diamond, and I give a short review on the experimental and theoretical investigation of
spin dynamics in metals. In Chapter 3, the characterization measurements of BDD sam-
ples and the description of the experimental setup are presented. Chapter 4 provides the
ESR measurement results and the discussion. The thesis concludes with a short summary
in Chapter 5.



Chapter 2
Theoretical background

In my Master’s project, I studied the spin dynamics of superconducting boron-doped dia-
mond. To establish these investigations, a theoretical overview is required on the extraor-
dinary properties of boron-doped diamond, with special emphasis on superconductivity,

and the spin relaxation in metals.

2.1 Superconductivity

Here, T will recapitulate the striking features and basic theories of superconductors. The
elementary properties of superconductors are the following: (i) superconducting materials
show zero electrical DC resistance below the superconducting critical temperature (7);
(ii) below T, and below a critical value of the applied magnetic field, a superconductor
behaves as a perfect diamagnet regarding its response to the magnetic field (Meissner-
effect); (iii) below T, a superconducting gap [2A(T)] occurs around the Fermi level; (iv)
a supercurrent appears between two separated superconductors (Josephson-effect) [15].

By 1950, experimentally several of these unique properties were known, however, the
Ginzburg-Landau theory could only give a phenomenological description. The first mi-
croscopic theory was provided in the seminal paper of Bardeen, Cooper, and Schrief-
fer (BCS) [16]. Therein, an electron-gas was considered, where the electrons interact via
exchange of virtual phonons, i.e., electrons pair up to form bound states of Cooper pairs.
The BCS theory simplified the attractive interaction of electrons near the Fermi energy
by an effective interaction V', e.g., it was neglected that the phonon interaction is retarded

in time. The BCS theory yields an experimentally relevant relation between T, and the
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density of states, D(Ep):
1
T.=0.850 -, 2.1
PP ( D(EF)V> 21)
where 6p is the Debye temperature. This equation is only valid in the weak-coupling limit
of the electron-phonon coupling: 1 > D(FEr)V = A. The energy gap at 0 K, A(0), is

connected to T, via
A(0)

=1.76 2.2
T, : (2.2)

where kg is the Boltzmann constant.

Due to ignoring the details of the electron-phonon interaction, the interaction V' was
replaced by more realistic potentials. In the framework of the Eliashberg theory [17], the
modern expression of the electron-phonon coupling constant reads

Y LY i) o

Herein, ¢(£2) is the electron-phonon matrix element, F'(€2) is the phonon density of states,
and o?F(Q) is the Eliashberg spectral function of electron-phonon scattering.

To take into account the screened Coulomb repulsion, a dimensionless quantity, u is
introduced. The Coulomb pseudopotential is renormalized due to retardation, and reads

as follows

. 1
(Y 24)

where FEp is the Fermi energy.
Via numerical solutions of the Eliashberg equations, McMillan [18] could reproduce T in
most cases using the expression:
0 1.04(1 + A

Tcziexp{—#&_i)}. (2.5)
Superconductors can be classified according to two basic criteria. The existence of one
or two critical magnetic fields defines Type-I and Type-II superconductors, respectively.
In the case of Type-II superconductivity, magnetic field can penetrate in form of flux
lines (vorteces). Based on the validity of the BCS theory, superconducting materials are

conventional or unconventional [15].

2.2 Boron-doped diamond

The superlative properties of diamond make it irreplaceable in several industrial applica-

tions. The appearance of man-made diamond on the diamond market and in scientific
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Figure 2.2: Chemical vapour deposition
Figure 2.1: The crystal lattice of dia- (CVD) synthetic diamond is used for a wide
mond [19]. range of high-technology applications [20].

laboratories was therefore an important leap to unravel its exceptional behaviour. Herein,
I will give a short summary of the synthesis methods of this material, and I will discuss

the insulator-metal transition in its derivative, boron-doped diamond.

2.2.1 Synthesis and basic properties

The sp3-bonded allotrope of carbon, diamond, is a metastable crystal at ambient pres-
sure and temperature. Whereas thermodynamically the sp? bonds are more stable, the
activation barrier separating the sp?-bonded graphite and diamond is large enough to
prevent the transformation. Diamond crystallizes in a variation of face-centered cubic
structure (see Fig. 2.1), the so-called diamond lattice. It consists of two interpenetrating
face-centered cubic Bravais lattices, displaced along the body diagonal of the cubic cell
by one quarter the length of the diagonal [21].

Pure diamond is colorless and transparent. However, due to different substitutional impu-
rities and defects, natural diamond can be found in various colours. The strong covalent
bonding explains that diamond is the hardest material in the nature. It has large ten-
sile strength, excellent thermal conductivity, and large Debye temperature (fp). Unlike
graphite, it is a large, indirect band-gap (5.5 eV) insulator [22].

The excellent thermal conductivity, the large breakdown field and the large electron
and hole mobility would support its application in electronic devices. In order to build
diamond-based integrated (or even spintronic) devices, one needs to overcome several dif-

ficulties. The rarity of natural diamond requires a facile, high-yield synthesis method,
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with which both p- and n-type doping can be achieved [22]. Below, I will show that the
former two issues has already been resolved. Although the lack of n-type doping was a
serious obstacle to applications, successful n-type doping with shallow donors has recently
been demonstrated [23].

The production of man-made diamond (see Figure 2.2) was attempted as early as 1880 [24].
The first, reproducible method, the so-called high-pressure high-temperature (HPHT)
method was adapted in 1955 by General Electrics Company [25]. Although commer-
cially the low-pressure methods would have been more attracting, the chemical vapour

deposition method (CVD) was invented as late as the 1980s.

High-pressure high-temperature method

CHy H.
®CH, H, Hy

Reactants +, ©cH4

Activation layerl

Growth cell Free radicals

Carbide I]]]]] N CHy  CHs s
ring (belt) H CH,
W CH, WA A

Diffusion layer y

Figure 2.3: The belt press design for HPHT  Figure 2.4: Schematic description of the
production of synthetic diamond [26]. CVD method [22].

Carbide anvil

The HPHT process mimics the natural diamond growth due to geophysical processes. A
typical setup of the HPHT approach is shown in Fig. 2.3. The so-called belt press design
involves huge hydraulic press at high temperature on the starting high-purity carbon
material with anvils (8-9 GPa at 2500-2800 K for 5 s). In between a ring-shaped structure
confines the radial press [27]. The starting materials are, in general, graphite discs.

Due to the relatively low price, the HPHT method remains widely used in the cutting
and abrasive industry. In addition, it is used in jewelry for enhancing the properties of

natural diamond.

Chemical vapour deposition

The success of the CVD process in the 1980s rekindled the attention to man-made dia-
mond [28]. In Fig. 2.4, the schema of the CVD process is shown. The process relies on
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decomposing carbon-containing gas molecules (reactants), such as methane to free rad-
icals, and depositing diamond on a substrate [20]. The presence of hydrogen plays an
important role, as it can remove non-diamond carbon and it can terminate a part of the
carbon ‘dangling’ bonds [22]. As a side effect, hydrogen is present in different complexes in
diamond films. A well-known example of this is trans-polyacetylene [29]. The ionization
of gases (activation) in the reaction chamber can be achieved by microwave power, a hot
filament or by other means [20].

In contrast to the HPHT approach, CVD is preferred in reasearch laboratories, as this
procedure yields significantly lower impurity concentrations. Due to recent improve-
ments [20, 30], longer carrier lifetime and higher drift mobility were observed in CVD
diamond than in “high-quality” natural diamond.

The cost of the CVD method can be reduced by growing nanocrystalline diamond, instead
of bulk single crystals [31]. Several properties of nano-structured diamond are similar to
the bulk material, except for the lower carrier mobility and thermal conductivity [32, 33].
Nanocrystalline diamond possesses a number of advantages, such as, e.g., the applicabil-
ity as nano-electromechanical system devices [11], bio-markers [34] or as single photon
sources [35], and the possibility to grow on several alternative substrates [36]. To achieve

successful growth, a nucleation enhancement step is required on substrates.

2.2.2 Conduction properties

The recent interest in boron-doped diamond (BDD) was initiated by the remarkable dis-
covery of superconductivity in BDD prepared by the HPHT method in 2004 [12]. In the
following, I will briefly review the insulator-metal transition upon boron doping, the su-
perconducting properties of BDD, and the transport properties in the framework of weak

localization.

Insulator-metal transition

In the HPHT approach, substitutional p-type boron doping can be achieved by adding B4,C
to graphite. Boron doping with the CVD method relies on adding gaseous trimethylboron
to the methane as a reactant.

When the boron concentration is increased above a critical concentration n., the insulator
behaviour changes to metallic. Using secondary ion mass spectrometry (SIMS), the critical
concentration is found to be n. &~ 4—>5-10%Y ecm ™ [37], largely depending on the synthesis

procedure.
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Figure 2.5: Illustration of the weak localization. A stable localized electron-wave interference

pattern, called weakly localized orbit circumvents a large scale potential fluctuation [40].

The Mott transition [38] is an insulator-to-metal transition, where a doped semiconductor
becomes a metal. It takes place when the concentration of the randomly distributed boron
reaches n., and the boron-related states overlap. This is directly related to the Bohr
radius, which reads

gay

= 2.6
ap m* ) ( )

where ¢ is the dielectric constant, ag is the Bohr radius in vacuum, and m* is the effective
mass in units of m,. The critical concentration is expected at aBn(l;/ ® = 0.26. With the
usual values (¢ = 5.7 and m* = 0.74), this simple relation gives n. = 6-10% cm™3 [14, 39,

which is in reasonable agreement with the experimental value of n..

Normal state

Concerning BDD, one of the most important discussions was on the nature of itineracy
above the critical boron concentration. It was found theoretically that metallic behaviour
is either due to the lightly hole-doped diamond bands [41] or due to the acceptor bands [42].
An angle-resolved photoemission spectroscopy (ARPES) study [13, 43] showed the valid-
ity of the former prediction, i.e., that conduction (and thus superconductivity) is intrinsic
to BDD and that the conduction band is derived from the valence band of diamond.

Below a certain temperature, the normal-state resistivity of boron-doped diamond in-
creases slowly when the temperature is reduced. At this temperature, the inelastic and
the elastic mean free paths are the same order of magnitude. The essence of this effect,
the so-called weak localization (see Figure 2.5) is the constructive quantum interference
of electron waves split and elastically scattered by potential fluctuations. The weak lo-
calization in BDD arises from electron-phonon scattering [14], and it is pronounced and

well-known in nanocrystalline diamond [44].
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The second-order, insulator-to-metal transition in BDD can be described by two crit-
ical exponents, v and 7. The former relates the correlation length (§o.) to np as
&loc ¢ 1/ |ng —nc|”. n connects the energy and length scales of the system: E oc 1/L".
Experimentally, n &~ 3 and v = 1 were obtained in agreement with the theory [45]. The

scaling behaviour is expected to reduce the density of states as D(Ep) o |ng — nc]”(?’*”).

Superconducting state

As pointed out in Sec. 2.2.1, samples produced by the HPHT method show high impurity
concentration. This might suggest that superconducting boron (7. = 6 K at 175 GPa) [46]
is responsible for the observed superconductivity in BDD. The doubt was first raised by
Ekimov et al. [12] but the opposite pressure dependence of T, in boron and in BDD con-
tradicted the assumption. Later on, a high-resolution transmission electron microscopy
(HRTEM) study [47] showed evidence that amorphous boron causes superconductivity
and it was claimed that intrinsic superconductivity in BDD was unlikely. The contro-
versy was resolved when superconductivity was confirmed in CVD prepared materials [48].
For materials produced with the microwave plasma enhanced CVD process, a significant
orientation dependence was found, and T up to 11 K was measured in (111) oriented
samples [49].

Although it was expected that the T, in BDD would be increased by additional boron
doping [50, 51], it turned out that boron tends to form boron pairs [52] and hydrogen in
the CVD process effectively passivates the boron acceptors, leading to B-H complexes [53].
In addition, the enhancement of T, at lower doping levels is explained by the vicinity of
the insulator-metal transition [14].

Several reports [54, 55, 56] confirmed that the BCS approach is valid in BDD. In this
respect, the relatively high T, for a disordered semiconductor-derived material is due to
the energetic phonons in diamond, which is a stiff material. The type-II superconductivity
(confirmed, e.g., in Ref. [57]) originates from the strong coupling of phonons to the holes
in the diamond bands. The three-dimensional metallic bands couple to three zone-centre
optical phonon modes, in contrast to MgB,, where the metallic bands are two-dimensional
and couple to two optical phonon modes. Despite a very large electron-phonon coupling
potential V' for diamond [58], the three-dimensional nature reduces its density of states
compared to MgBs. Therefore, the electron-phonon coupling A is 0.4-0.5 [50], whereas it
is A &~ 1 in MgB,, which results in significantly lower critical temperatures in BDD [22].

Even if superconductivity in doped semiconductors is an intriguing issue for theory [56, 59],

until 2004, it was only observed for GeTe, Sn'Te and for doped Sr'TiO3. Following the re-
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sults of Ekimov et al. [12], boron-doped silicon (7. ~ 0.35 K [60]) and silicon carbide
(T. =~ 1.4 K [61]) were also found to be superconducting.

2.3 Spin dynamics in metals

In the following, I present experimental techniques and theoretical background of spin
dynamics in metals. This leads us to the discussion of spin dynamics in BDD. I present
transport- and spectroscopy-based spin-relaxation techniques, especially the Hanle spin-
precession experiment and the conduction electron spin resonance. Finally, I will discuss
the Elliott-Yafet theory, i.e., the relevant spin relaxation mechanism in metals with inver-

sion symmetry.

2.3.1 Spin transport
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shows the nonequilibrium spin-polarized elec-
detector electrodes [62].

trons [2].

To calculate T, it is plausible to measure time and space correlations in magneti-
zation. E.g. transmission electron spin resonance (TESR) was successfully applied by
Janossy [63] to determine the propagation of nonequilibrium magnetization of excited
electrons in paramagnetic metals.

In electrical spin-injection experiments, the Johnson-Silsbee scheme [64, 65] is used, as

depicted in the non-local geometry in Fig. 2.6. Therein, the F1 contact injects I current
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toward the grounded left end of the wire, leading to a linear voltage drop from F1 to the
ground. F1 is ferromagnetic, thus, the spin-polarized electrons diffuse in the £+ direction,
with a spin-diffusion length of dspin = vr+/TTs, Where vp is the Fermi velocity and T is the
momentum relaxation time. As F2 is ferromagnetic as well, electrons with parallel spin
to the magnetization of F2 cause a spin-dependent voltage from F2 to the right end at
x = b. Hence, if the x = L, position of F2 is varied, the exponential decay of this voltage
could yield dgpin and .

However, it is a major difficulty to reproduce these devices with different L, values.
Instead, the zero frequency analogue of the TESR, the so-called Hanle spin-precession
method is employed. There, a magnetic field is applied transverse to the orientation of
the injected spins. The electrons precess under the influence of the field, which provokes
a phase coherence loss for large enough fields. In general, Hanle data (shown in Fig. 2.7)
are fit to a mixture of absorptive and dispersive contributions. These fits to the mag-
netic field dependence provide information on the spin polarization and the spin-diffusion
length [66]. The Hanle method was recently demonstrated in mesoscopic devices [67] and

in graphene [7].

2.3.2 Electron spin resonance

Since its discovery in 1944 [68], electron spin resonance (ESR) spectroscopy has been
proven to be a convenient contactless technique in studying the magnetic properties of
biological and chemical systems. In solid-state physics, ESR became an important method
in identifying the ground state of strongly correlated electron systems [69]. E.g. ESR
characterization was key for the synthesis of phase pure ACqy (A=K, Rb, Cs) [70] fulleride
polymer. This technique was also utilized to examine the spin-relaxation properties of
the conventional superconductor with the highest T,, MgB, [71, 72].

A free electron possesses a spin S resulting in a magnetic moment of

p= —geng. (2.7)

Herein, g, = 2.0023(1) is the free electron g-factor, ug = 9.27(4) - 1072* J/T is the Bohr
magneton, and A is the Planck constant. In the absence of a magnetic field, the energy
levels of the two spin quantum states with m, = +1/2 quantum numbers are degenerate.
If a Bg = By - k external magnetic field is applied to the electron, the degeneracy is lifted.
The energy difference is AE = E_y/5 — E_1/2 = gejts By, in agreement with classical elec-

trodynamics.
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In a solid-state, the energy splitting of the electron leads to the so-called Zeeman Hamil-
tonian

Hext = —p - Bo = gyusd - Bo. (2.8)

gy is the so-called Landé g-factor, J = L + S is the total angular momentum. Hence, the
energy splitting reads as
AFE = gJ,U/BJZBO. (29)

Applying the Ehrenfest theorem for the time dependence of the total angular momen-

tum [73]

d(J) i _
o —n ([Hext, J]) = 7(J) x Bo, (2.10)

where the gyromagnetic ratio v = 27 - 28.0 GHz/T is introduced, and (.) indicates the
quantum mechanical expectation value. The equation of motion is similar to the classical
case: the Bg magnetic field produces a torque on the angular momentum, and this results
in a Larmor precession around Bg with wy, = 7B, frequency.

In an ESR experiment, a transition is induced through switching on an alternating mag-
netic field along the x axis: B, = B,gcoswt. This linearly polarized B, can be analyzed
by breaking it into two rotating components. Close to the resonance, the component
which rotates opposite to the precession of the moment, may be neglected. Without
loss in generality, we assume that the clockwise rotating B; = By [icos(wt) — jsin(wt)]
(B; = Byo/v/2) induces the transition. In the laboratory frame, Eq. (2.10) for the vJ =

magnetic moment can be rewritten as

d ()

5 = () X v[Bo + Bq]. (2.11)

In the frame whose z-axis rotates along By, it becomes

olp) _ (k) > k(v By —w) + 1y By]. (2.12)

ot
Beff

Clearly, the classical equation is now valid for the B.g effective magnetic field. The reso-
nance condition is satisfied with vBy —w = 0, i.e., if the frequency of the perturbing field
is equal to the Larmor frequency: w ~ wr,.

In the rotating frame, near the resonance, the g magnetic moment rotates around the x
axis. The magnetic potential energy is, therefore, periodically returned.

Eq. (2.12) discusses the spin-flip without friction, which led to a precession around an
effective magnetic field in the rotating frame. The Bloch-equations [74] consider an ex-

ponential relaxation in the laboratory frame for M = p/V magnetization components in
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the material:

dMZ M() - Mz
= M x B), e
% TMxB), + T
dM, M,
= MxB), — — 2.13
= MxB), - (2.13)
dMy M,
—= ~v(MxB), — =Y

B is the effective magnetic field, M, is the equilibrium magnetization through the z-axis,
T is the spin-lattice, and 75 is the spin-spin relaxation time. The longitudinal 7} and
the transversal T; relaxation times are, in general, different, as the former describes an
energy transfer to a reservoir.

The Bloch-equations can be solved in the rotating frame [73], where the solution for the

in-plane component reads as

M = XOWOT2 (wo —w)T B,
po 14 (w—wo)?T; (2.14)
/ XoWo 1 .
M = T, B;i.

Herein, " indicates the solutions in the rotating frame, xo = poMy/By is the static volume
susceptibility, and wy = vBy is the resonance frequency.
Regarding M, and M, as components of a complex function, the solution in the standing
reference frame reads

ME = MLe™" + M e“'e™ /. (2.15)
Similarly, the complex function of the perturbing magnetic field is defined as

BY = By e™". (2.16)

Using Eq. (2.15) and Eq. (2.16), the linear response function, i.e., the volume magnetic

susceptibility reads
MC

T
C
B;B

(x is also called the dynamic susceptibility.) x’ and x” are the elastic (or dispersive) and

X = to—mg =X —ix". (2.17)

dissipative responses of the system, respectively. These are connected by the Kramers-
Kronig theorem.
Spin susceptibilities

For a material in thermal equilibrium, the Zeeman splitting yields to slight difference in

spin populations due to the Boltzmann law. This population difference is measured by
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the spin susceptibility of the material, which is proportional to the ESR intensity (see
Sec. 4.1.1).
Since a non-interacting spin system is a canonical ensemble, with its energy levels defined

in Eq. (2.9), the free energy reads

F:rJW@Tm<§:eﬂﬁ>, (2.18)

where N is the number of atoms and § = 1/kgT. The component of the volume magne-

tization along the field is

10F N

M = VB vgJ/LBJBJ (BgspsJ Bo), (2.19)

where Bj(x) is the Brillouin function. For low magnetic fields, the small-z expansion of

the Brillouin function is: B;(z) ~ Zz/3. For the Curie spin susceptibility, this yields

, N 22 J(J +1
Xo(Curle) _ ,LLO—gJ'uB ( )

Vo 3T (2.20)

where fig is the vacuum permeability. In Mn?*, the angular momentum is quenched [73],
and J is replaced by S. In a solid-state, the Landé g-factor, g, is substituted by the
g-factor, which takes into account the local field in the sample [75, 76].

In case of conducting samples, the free-electron gas model is valid. In this case, the
electrons obey the Fermi-Dirac distribution

1

Herein, ¢ is the energy and p is the chemical potential. When a By magnetic field is
applied, the energy gain (loss) due to the parallel (anti-parallel) spin of the electron is
% gupBy. This energy difference leads to a surplus of the parallel spins, i.e., paramagnetic
linear response of the metal. Due to the nearly stepwise Fermi-Dirac distribution, the Pauli
spin susceptibility of the conducting samples is proportional to the electronic density of
states at the Fermi level, D(FF):

2 1

Xo(Pauli) = ,uOgZ;fBD(EF)V. (2.22)

V. is the volume of the unit cell [76]. A dimensional analysis shows that when D(FEF) is

measured in units of 1/(energy - unit), y is dimensionless in SI units, as required.
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Figure 2.8: Schematic of the Elliott-Yafet spin-relaxation mechanism during spin trans-
port [77].

2.3.3 Elliott-Yafet spin-relaxation mechanism

The spin-orbit coupling in atomic physics enters into the Hamiltonian from the 1/c2-
expansion of the relativistic Dirac equation. In central potential, this approach gives

ke?

2m2r3c?

Hso L-S, (2.23)

where k = 1/4meq is the Coulomb constant, m, is the free electron mass, and ¢ is the
speed of light. Eq. (2.23) expresses that the moving electron experiences a magnetic field
in its rest frame that arises from the Lorentz transformation of the static electric field.

Elliott [79] showed that the presence of spin-orbit interaction (Hgo) leads to Bloch states
which are an admixture of the spin-up |1) and spin-down ||) states with k lattice momen-

tum:
Upr(r) = Ja(r) D) +be(r)[4)] e
Uy (r) = [a’:k(r) L) + 0, (1) m} ok

Herein a and b are the lattice periodic coefficients written with the explicit dependence

(2.24)

with the radius r. The two degenerate Bloch states can be called Wy 4+(r) and Wy | (r), as
a~1andbis

A
bl = 5= <1 (2.25)

as shown by perturbation theory. A is the amplitude of the matrix element of Hgo, and
AF is the energy distance between the band state in question and the state in the nearest
band with the same transformation properties. The g-factor shift, Ag = g — g. can be
estimated by taking the matrix element of [, on the unperturbed function, so that Ag is

at the order of |b|:

A
Ag=a1— 2.26
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Figure 2.9: The original Beuneu-Monod plot showing the connection between (Ag)? and the
ration of the ESR linewidth and resistivity for pure metals AB/p. Solid line and dashed curve

correspond to a1 /a3 = 1 and «j /a3 = 10, respectively [78].

where o is a constant over unity.

To give an estimate on T, (in metals T, = 77 = Ty), the Elliott [79] and Yafet [80]
relations will be discussed. The Elliott relation expresses that the momentum scattering
is proportional to the spin-flip scattering. With the momentum scattering interaction

Hint, the wave functions of Eq. (2.24) yield
[T Hinel Pro )| = 10 - (it [Hine| Wi (2.27)

Combining the g-factor shift and s, the Elliott relation reads

T s (E)Q S (2.28)

(6%} T

where T is the momentum relaxation time. The estimated T/T, ratio is dependent on the
scattering mechanism, that is, whether it stems from impurities, boundaries or phonons.
Within the Drude model, the conductivity reads

ne*t

= = oW T, (2.29)

1
o= -
0

*

where n is the electron density, m* is the effective mass, and wy, is the plasma (angular)

frequency. Substituting the ESR linewidth AB = 1/~4T} and Eq. (2.29) into Eq. (2.28),
it yields [81]
E0w)) o

AB = 5
T Qs

(Ag)* - 0. (2.30)
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This expression corresponds to the more general Yafet relation

D) o |b]” o(T), (2.31)

which was justified over a large temperature range even when the temperature dependence
of the resistivity is non-linear, i.e., well below the Debye temperature [2].

The Elliott-Yafet relation (shown schematically in Fig. 2.8) in Eq. (2.30) combines three in-
dependent empirical parameters, AB, Ag, and g, i.e., it is a benchmark of spin-relaxation
experiments in novel metals. Beuneu and Monod (78, 82] verified its validity for elemental
metals. There, the variation of wy from metal to metal was neglected and the linear scal-
ing was established between AB/p and (Ag)?. Figure 2.9 depicts the Beuneu-Monod plot
for pure metals. a; 5 may vary between 1. .. 10, and the best fit was found for 10'* G /Qcm.
The linear scaling of the Elliott-Yafet relation occurs mostly for monovalent materials and
notable exceptions are Be and Mg for which the so-called “hot-spot” model was invoked
by Fabian and Das Sarma to explain the data [83]. The hot-spot model recognizes that
spin relaxation is enhanced for particular points of the Fermi surface. Given that the
spin lifetime is much larger than the momentum lifetime, an electron wanders over large
portions of the Fermi surface before spin relaxation occurs, i.e., the hot spots dominate
the spin relaxation. This effect is pronounced for metals where the Fermi surface strongly

deviates from a sphere.

2.4 CESR signal in metals

ESR is most commonly used for the observation of localized paramagnetic spins (often
termed as electron paramagnetic resonance). Therefore care is required for the identifi-
cation of ESR signal of conduction electrons in metals. Even a small amount of impurity
could hinder the observation of the latter. Notable examples of CESR identifications from
the recent past are the discovery of CESR in Rb3Cgy [84], in RbCgo [70], in MgB, [71],
and in carbon nanotubes [85].

Herein, we give the benchmarks of observing an ESR signal originating from the itinerant

electrons in a metal. In the order of importance [69]:

(a) The value of the measured spin susceptibility should match the Pauli spin suscepti-

bility, which is related to the density of states.

(b) The temperature dependence of the signal intensity should be characteristically dif-
ferent from the Curie dependence (x(Curie) o< 1/T).
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(c) For a metal with inversion symmetry, the linewidth should increase with increasing

temperature following the Elliott-Yafet relaxation mechanism [79, 86].

(d) The g-factor shift and the ESR line-width should obey the Elliott-Yafet relation.



Chapter 3
Experimental techniques

The bulk properties of BDD as a disordered metal were measured using X-band electron
spin resonance technique. This chapter starts out with a review of the characterization
measurements performed on the BDD samples. Transport measurements were performed
to examine the conduction properties of BDD. Its light scattering properties were inves-
tigated by Raman spectroscopy using visible excitations. Later on, I will introduce the

ESR spectrometer I used.

3.1 Samples and their characterization
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Figure 3.1: Scanning Electron Microscope (SEM) image of the surface of the sample prepared
by MPCVD method, consisting of grains of typically 3 um size.

To prepare our samples!, diamond nucleation was initiated by immersion of clean

!The samples were prepared by Oliver A. Williams.
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Figure 3.2: Transport experiments in BDD (a) Weak localization dominates the temperature

dependence below 150 K. (b) The sample is superconducting below T, = 3.8 K.

silicon (111) wafers in aqueous colloids of hydrogenated nanodiamond particles in an
ultrasonic bath. Although the growth of diamond on untreated silicon results in nucleation
densities of around 10%-10° ecm ™2 [87], this process is known to produce nucleation densities
in excess of 10* em™2 [88]. To acquire p-type boron doping, diamond was grown for 20 h
using microwave plasma enhanced CVD (MPCVD) with 4% CH,4 diluted in Hy with
6400 ppm of trimethylboron [33]. Microwave power of 3 kW and substrate temperature
of 800 °C yields films of approximately 6 pm thickness. The Si substrate was removed
using a mixture of HF and HySO4. The former oxidizes Si, the latter removes SiOs.
Figure 3.1 depicts the SEM image of our material?>. The average diameter of the grains
is 3 um, which is consistent with the nucleation density of 2 10! cm™2.
Figure 3.2 shows transport measurements in our sample. Figure 3.2(a) exhibits an increase
in resistivity with decreasing temperature below 150 K. Earlier reports [39, 44, 45] suggest
that weak localization is responsible for this behaviour. Figure 3.2(b) indicates the onset of
superconductivity at 3.8 K. Superconducting properties of similar nanocrystals of boron-
doped diamond are analyzed in Ref. [11]. T, ~ 4 K usually corresponds to a boron
concentration of n ~ 10?! cm™ (or ~ 6000 ppm) according to the calibration established
for samples prepared with chemical vapour deposition [49, 53].

In Fig. 3.3, the Raman spectrum of heavily boron-doped diamond (BDD) is depicted at
A =532 nm.
The Raman bands around 500 cm ™! (denoted by BB-1 and BB-2 in Fig. 3.3), were assigned

to boron dimers [52, 89, 90], to clustered boron atoms [90], and to amorphous diamond [91].

2SEM and transport measurements were performed by Soumen Mandal and Christopher Béuerle.
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Figure 3.3: Raman spectrum of BDD at A = 532 nm. Labels denote the boron dimers or point
defect states (BB-1 and BB-2), the peaks due to the maxima of the phonon density of states
(PDOS-1, PDOS-2), and the zone-center phonon line (ZCP). Solid Lorentzian (BB-1, BB-2,
PDOS-1 and PDOS-2) and Fano (ZCP) lines show the fit for the spectrum.

Isotopic substitution did not give satisfying identification of the origin of the feature as
both boron and carbon substitution gives shift on Raman spectra [90]. The controversy of
the interpretation might be resolved by regarding boron dimers to be point defects present
in BDD in high concentration. The defect concentration correlates with the incorporated
boron concentration, which reaches its maximum on the surface of the nanocrystals [92].
Due to the inhomogeneous distribution of boron atoms [93], BDD does not obey the
Raman wavevector conservation rule and yields similar Raman spectrum for BDD as for
amorphous diamond.

The peak was fitted with the sum of two Lorentzian components (fit shown in Fig. 3.3), as
opposed to a Lorentzian and a Gaussian component in Ref. [89]. The empirical relationship
between the Raman shift of the lower Lorentzian component and the boron content (n)
measured by secondary ion mass spectrometry (SIMS) found in Ref. [89] yields np =~
1.8-10%" ecm~3 for the boron content in the sample. The approximate agreement between
SIMS results and the fit further proves that the mode might be due to the high boron
dimer concentration.

The Raman band around 1000 cm™ (PDOS-1) originates from the maximum of the
phonon density of states of diamond. As discussed above, defects in the material make

the otherwise forbidden states allowed [94]. The Raman structure around 1200 cm™*
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I and another one with an

consists of two components: a Lorentzian-like at 1210 cm™
asymmetric lineshape around 1300 cm™!. The 1210 cm™! (PDOS-2) mode appears due
to the presence of defects [90, 95], or due to boron-carbon complexes [96].

The zone center optical phonon of diamond, which occurs at 1332 cm™! with v = 1.2 cm™!
linewidth [97], is shifted to 1300-1313 cm™! in BDD and acquires a Fano lineshape due to
the presence of free charge carriers [96, 98|.

In Fig. 3.3, a Fano lineshape is shown fitted on the Raman spectrum. The Fano lineshape
[99] originates from the quantum interference between the zone-center optical phonon and

a continuum of electronic transitions around the same energy. It can be calculated as

g+ (=52

Int(w) o ,
YT ey

(3.1)
where Int(w) is the intensity of the Raman signal, h{)y and Al are respectively the real
and imaginary parts of the self-energy in BDD after coupling between discrete phonon
transition and a continuum of states. If the electronic continuum disappears, and ¢ — o0,
the Fano formula becomes the usual Lorentzian curve. The asymmetry parameter ¢
conveys information on the Raman scattering amplitude of the decoupled phonon 7}, and
the electronic continuum 7,. The fit yields ¢ ~ —1.4 and evidences an anomalously low
value for T, /T [96, 100].

3.2 ESR spectrometer setup

ESR measurements in BDD were carried out on an X-band Bruker Elexsys E500
spectrometer®. Temperature in the 5-300 K temperature range is controlled by a (liquid
helium) continuous flow Oxford cryostat. To present a typical setup, I will follow the
path of the microwave (MW) radiation, with special care to the resonant cavity.

In Fig. 3.4, the scheme of an X-band ESR spectrometer is shown. The X-band MW
radiation (~ 9.4 GHz) is generated by the MW source, a Gunn diode, with a power of
200 mW. The output of the diode is transmitted toward the detector using waveguides.
The electromagnetic radiation is split up to three parts: a small portion is sent to the
frequency counter, the second is transferred to the MW cavity, and the rest acts as a
reference signal. The two latter parts reach attenuators, which reduce the amplitude of

the signal®.

3Laboratory of Physics of Complex Matter, Ecole Polytechnique Fédérale de Lausanne
4As a side effect, the signal phase changes as well.
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Figure 3.4: Schematic diagram of an X-band ESR spectrometer [101].°

The second component, i.e., the signal sent to the MW cavity, gets into the circulator.
This multiterminal network transmits power entering the ith arm to the (i+1)th arm [102],
thus, the power sent to and leaving the MW cavity can be transmitted through the same
waveguide.

The resonant cavity functions as an impedance-matched load. In our cylindrical cavity, the
MW cavity sustains the TEy;; mode. This electromagnetic field configuration is the result
of standing waves with no net energy flow. The dimensions of the cavity correspond to the
wavelength (~ 3 cm) of the microwaves. The frequency characteristics of the resonator
can be displayed by sweeping across the resonator bandwidth. If the resonant frequency is
within the frequency range swept, a dip shows up on an oscilloscope. The sharpness of the
response of the resonant system is described by a figure of merit, the quality factor defined
by @ = v/Av. Herein, v is the resonance frequency and Av is the bandwidth. Differently,
the @ factor can be interpreted based on the efficiency of the energy storage [103]

E(stored in the resonator)

Q =2

. 3.2
E(dissipated by the resonator per MW cycle) (3:2)

The impedance matching of the cavity to the waveguide, which is also called the critical
coupling, is found screwing a metallic partition, which extends partially across the waveg-

uide (in a plane perpendicular to the direction of propagation): the iris. During the ESR

5The diagram is valid for a modified JEOL spectrometer (Department of Physics, BME). In the Bruker
spectrometer, the field controller and the Hall sensor are connected to get feedback on the magnetic field

value.
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measurements, the load-line conditions are maintained by the automatic frequency control
unit (AFC).

If the sample, positioned in the magnetic field maximum (B;) in the resonant cavity,
suffers an electron spin-flip, a minuscule power is reflected from the cavity. The reflected

signal reads
dE = dEy ') = OB, (y' — ix")Vel@®  (C constant), (3.3)

where V' is the volume of the cavity. This reflection and the reference signal are summed
with the magic tee coupler (resulting in a factor of two loss). In order that constructive
interference be fulfilled, the phase of the reference arm (E = Eye'@+#0)) is set with a
phase shifter (denoted as ¢ in Fig. 3.4). The signal intensity at the detector diode is

related to ¢y phase as
Ijer ~ |E+dE]? = E2+2- EgB,V (Y cos(p — o) + X" sin(p — ) + O(AE?).  (3.4)

By setting ¢ = o + 90°, x”, the dissipative answer is measured.

In an ESR experiment, the By magnetic field is swept in the electromagnets and the w
frequency is regarded constant in contrast to the method described in Sec. 2.3.2. Due to
hysteresis, the magnetic field controller requires a feedback from the Hall effect sensor.
The signal-to-noise ratio is increased applying a lock-in amplifier. The radio frequency
modulation, demanded by the lock-in technique, is ensured by the modulation coils. The

frequency of the By,,q modulation is ~ 100 kHz. Then, Eq. (3.4) can be rewritten as

Al v
d;t Buod + O(B2.,) ~ 25| VVPBuoa + O(B2.,),
Bo

dB Bq mod (35)

Lock-in ™~

where P is the MW power. The measured ESR signal is therefore dx”/dB, which is a
derivative Lorentzian curve (cf. Eq. (2.14) and Eq. (2.17)).

3.2.1 The Dysonian lineshape

The phenomenological Bloch equations led to a Lorentzian ESR lineshape. In contrast
to our above consideration, the amplitude of the magnetic field decays exponentially in
conducting materials. The characteristic length scale is the penetration depth (9), which

reads

§ =/2/pwo, (3.6)
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where p is the permeability of the vacuum, w is the angular frequency of the exciting
microwave, and o is the conductivity. The time it takes to diffuse through the skin depth
is Tp, which is defined by § = vp \/’m, where vp is the Fermi velocity, T is the mo-
mentum relaxation time, and d = 3 is the dimensionality.

Dyson [104] showed that the lineshape in metals depends on the ratio of the skin depth
(0) to the thickness of the sample (d): A = d/§. As the excited electrons can diffuse in
and out of the skin depth, the ratio of T and the relaxation time 7 (which is equal to
T, in metals), R? = Tp/T; is also an important parameter.

In the seminal paper of Feher and Kip [105], several cases of Dyson’s formula are distin-
guished. The relevant limit in our case (see Sec. 4.1) is R — oo and A — oo, that is,
Tr > Tp and Tp > Ty, where Tr is the time it takes for an electron to diffusively traverse
the sample. With the spin-diffusion length of dgpin = vr \/Tl/d, the Tp > T} condition
is equivalent to 0 > dgpin. This is “the thick plate case with slowly diffusing magnetic
dipoles”.

For this situation, the ESR signal can be expressed as a sum of dispersion (f4*P) and

absorption (f2>%) Lorentzian lines:
P o cosg - f™(B — By, w) +sing - f*P(B — By, w), (3.7)

where B is the magnetic field, By is the resonance magnetic field, w is the linewidth, and
p = 45°.



Chapter 4
Results and discussion

In this chapter, I will present my ESR measurement results in superconducting BDD
(T. = 3.8 K). The validity of the benchmarks of the conduction electron spin resonance
signal will be analysed. I will discuss the validity of the Elliott-Yafet theory of spin

relaxation in BDD.

4.1 Electron spin resonance in BDD

The critical temperature in our sample is T, = 3.8 K (See Sec. 3.1), thus, all measurements
are performed in the normal state. Resistivity in BDD is pretty large above T¢, so the
quality factor of the microwave cavity does not decrease substantially. To enhance the
broad resonance signals and also to eliminate any spurious background signals from the
cavity or the cryostat, one needs to employ large magnetic modulation.

The low- and high-temperature ESR measurements in BDD significantly differ. A typical
low-temperature spectrum (at 35 K) is shown in Fig. 4.1(a). Due to using derivative
signals in ESR (see Sec. 3.2), the signal amplitude of Lorentzian lines drops as 1/(AB)?,
where AB is the linewidth. Thus, the integration visually enhances the broader compo-
nents [84]. In Fig. 4.1(b), the integrated spectrum is displayed confirming the presence
of three different ESR signals. In the following, I refer to these as B [gp = 2.003(1)], C
[gc = 2.003(1)], and D [gp = 2.016(1)]. It is notable that B and C reveal a substantial
asymmetry, whose origin will be discussed below.

Figure 4.2 illustrates the evolution of the ESR spectrum above 75 K. The intensity of the
narrow line, which is the superposition of the B and C signals, decreases with increas-
ing temperature. Nevertheless, the intensity of a broad component with resonance field

By =~ 310 mT does not change significantly.
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Figure 4.1: (a) The measured raw, derivative ESR spectrum of BDD at 35 K. (b) The integrated
ESR spectrum (Exp.) and a fit (Fit), and the fitted components. The three components (B, C,
and D lines) probably originate from carbon dangling bonds accompanying hydrogen-vacancy
complexes (cf. Sec. 4.1.1). Note that the C signal is slightly asymmetric because of the finite
penetration depth.

In Fig. 4.3, the derivative (Fig. 4.3(a)) and integrated (Fig. 4.3(b)) signal at 175 K is
depicted in order that the broad line be more discernible. The broad component will be
denoted as A [ga = 2.16(3)]. The comparison of Fig. 4.1(a) and Fig. 4.2 evidences that
the deconvolution of the ESR spectra into several components varies in the different tem-
perature ranges. The D signal can be followed up to 75 K, however, starting from 75 K
the fit converges to the signal A. At 75 K the two signals can be fitted independently. To
prove that the A signal stems from the itinerant electrons in BDD, I will investigate the
validity of the sound benchmarks distinguished in Sec. 2.3.3.

The A signal exhibits a significant asymmetry, and is best fitted with ¢ & 45° of Eq. (3.7),

which is an equal mixture of absorption and dispersion Lorentzian lines. Remarked in
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Figure 4.2: ESR spectra of BDD at different temperatures. Note the broad ESR line (denoted
by asterisk) which is assigned to the conduction electrons. The sharp ESR line originates from

localized defect spins.

Sec. 3.2.1, the ESR lineshape corresponds to the thick plate case. This is known as the
“NMR limit” of spin diffusion of the Dysonian lineshape [105].

As I pointed out in Sec. 3.2.1, the conditions of the validity of the ¢ ~ 45° case are
Tr > Tp and Tp > Ti. The latter expression is equivalent to § > dgpin, Where ¢ is
the penetration depth and dgpi, is the spin-diffusion length. Using Eq. (3.6) and room-
temperature resistivity data in nanocrystalline diamond from Ref. [44], the penetration
depth is estimated to be § ~ 31 um.! At low temperature, § ~ 33 pm is calculated.
From the ESR linewidth, T} & 0.2 ns. With the Fermi velocity (vp(BDD2) ~ 1.1-10% m/s)
and momentum relaxation time (T(BDD2) = 5.1 fs) from an ARPES? study in Ref. [13],
the spin-diffusion length is dsin(BDD2) &~ 0.6 pum. These estimated values show that
the condition 0 > dgpin holds. Note that the momentum relaxation time from the Drude
model yields a similar value.

Figure 4.4(a) depicts the ESR linewidth of both A and D signals as a function of tem-
perature. The linewidth of A is 10 mT larger than that of D at T' = 75 K. Hence, it
confirms that the A and D signals have different origins. Below 75 K the A signal cannot
be resolved, whose origin is unexplained. We speculate that this effect is caused by weak-
localization (WL) (see Sec. 2.2.2; and Sec. 3.1), which may either lead to a sudden line

!This gives a lower bound for the penetration depth, as inter-grain interactions increase the resistivity.
2 Angle-resolved photoemission spectroscopy
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Figure 4.3: ESR spectrum of BDD at 175 K: D ESR lines as a function of temperature.

(a) derivative signal; (b) integrated ESR sig-

(b) Spin susceptibility as obtained from the
nal. A fit (Fit) with three components (A, B,

ESR signal intensity (A: A, B: >, C: o, and D:

and C) simulates well the experiment (Exp.). W) as a function of temperature. The result

Note the two narrow signals (B and (') and for A is magnified for better visibility. Note

h A ing f h
the broader component, (4) coming from the the Curie temperature dependence for B, C,

conduction electrons. and D.

broadening or a loss of spin susceptibility. It is known that WL becomes significant in
BDD below around 100-150 K [45], which supports that the change of the ESR signal of
itinerant electrons and WL may be related. The linewidth of the A signal weakly increases
with temperature and it has a sizable residual value. These observations are in agreement
with the Elliott-Yafet theory of spin relaxation [79, 86]. In addition, the Ag is positive
for BDD, which is compatible with hole nature of charge carriers in BDD [73].

In Fig. 4.4(b), the spin susceptibility of the four ESR signals are shown. B, C, and D
exhibit a Curie (ys oc T, as seen in Sec. 2.3.2) temperature dependence which is charac-
teristic for localized, paramagnetic centers. The ESR intensity of A increases by a factor
two in the temperature range of 75 K to 300 K. This increase rules out that this signal
would originate from localized spins. Instead, its most probable origin is the itinerant con-

duction electrons in BDD. A similar increase of the CESR signal intensity with a factor of
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Figure 4.5: ESR spectrum of a mixture of BDD and Mn?*:MgO powder at room temperature.
The closely equidistant sextuplet comes from the |—1/2) — |1/2) Zeeman transition of Mn?*.

The broader central line is the C signal in BDD.

2-3 was observed in granular MgBs samples in the 40-300 K temperature range [71, 106].
Therein, this effect was explained by the limited microwave penetration in the metallic
grains: on increasing temperature the microwave penetration depth increases due to the

increasing resistivity thus resulting in an increasing CESR signal.

4.1.1 Spin susceptibility and the DOS

The ESR intensity calibration allows the measurement of the density of states at the
Fermi level in metals.
ESR spectroscopy measures the net amount of magnetic moments, which is proportional to
the sample amount. In order to gain information on the corresponding intensive variable,
the spin susceptibility, the ESR intensity of an unknown material must be calibrated
against a Curie-spin system with known amount of spins [69].
The spin susceptibilities (calculated in Eq. (2.20) and in Eq. (2.22)) are related to the
ESR intensity as

Igsg Zm = BresXs * 1, (4.1)
where n is the amount of the sample and B, is the magnetic field of the resonance.
According to Eq. (3.5), which takes into consideration the instrumental parameters, the

ESR signal intensity reads

IESR X Z m = BresXs : n\/ﬁBmod7 (42)
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where P is the microwave power and Bi,.q is the modulation amplitude. Nevertheless, it
is convenient to measure the mixture of the Curie spin system and the unknown material,
thereby eliminating the instrumental parameters.

The comparison of the ESR intensity of an unknown material to a known amount of Curie

spins yields
Xs(Unknown)  Igsgr(Unknown) n(Curie)

= . 4.
Xs(Curie) Igsr(Curie) n(Unknown) (4.3)

As an example, let us assume a S = 1/2 Curie spin system. The ESR intensity calibration
of an unknown material with itinerant electrons leads to (gpauli, curie = 2)
Igsr (Pauli) n(Pauli)
Igsr(Curie) n(Curie)
Eq. (4.4) can be used to determine the DOS at the Fermi energy, D(EF).
Figure 4.5 displays the ESR spectrum of mixed Mn*":MgO and BDD powder. The spec-
trum is a superposition of the sextuplet of Mn*":MgO (B,es(Mn*":MgO) = 336.6 mT)
and the C signal of BDD (Byes = 336.3 mT).
The spin concentration of Mn®*:MgO due to Mn*" ions (S = 5/2, L = 0) is known
to be 1.5 ppm. The only observable Zeeman transition of Mn?* is |—1/2) — |1/2)
which yields the effective (S(S +1))y,2+ = 9/4. Eq. (2.20) gives xs(Mn*" : MgO) =
5.63 - 107 emu/mol for the molar spin susceptibility of Mn**:MgO. Eq. (4.3) yields

= kpTD(Er) (4.4)

Xs(C) = 1.6 - 1077 emu/mol for the spin susceptibility of the C' signal at room tempera-
ture.

The low modulation amplitude and low microwave power employed for the measurement
in Fig. 4.5 is too low for resolving the other signals, especially the CESR (A) signal.
Therefore, the spin susceptibility of the other signals in BDD is determined indirectly,
i.e., the comparison of the C signal and that of A, B, and D gives the correspond-
ing y,. The analysis yields x4(A4) = 1.3(3) - 107" emu/mol = 1.1(3) - 107® emu/g,
Xs(B) = 1.6(3) - 1077 emu/mol, and x4(D) = 4.8(9) - 1077 emu/mol at room temper-
ature.

Assuming spin-1/2 paramagnetic impurities, their spin concentrations are 0.6 ppm
Nimp(C) = Nimp(p) ~ 1017 cm™ and 1.8 ppm Niymppy =~ 3 - 107 cm ™.

The spin concentration of the defects is in good agreement with bulk carbon dangling
bond defects accompanying hydrogen-vacancy complexes found both in weakly boron-
doped and as-grown CVD diamond [107, 108, 109, 110].

This accordance points to the fact that the quantity of these bulk defects mainly depends
on the CH,/H, ratio used for the growth of BDD [110]. The CH4/H, ratio controls the

grain size [111] and modifies the surface-to-bulk ratio. As the hydrogen concentration is
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Figure 4.6: Density of electronic states in BDD versus T,. Experimental DOS of the present
work (o) is shown together with DOS calculated from the ARPES measurements in Ref. [13]
(W). Error bar in our experiment is a conservative estimate and considers the uncertainty due

to the limited microwave penetration depth.

higher on the grain boundaries [92], the defect concentration is expected to have a maxi-
mum there. The high concentration of defects within the penetration depth explains the
asymmetry of the C' signal at low temperature.

Regarding the CESR signal, the value of x4(A) corresponds to a DOS of D(Er) =
4(1) states/(eV-C-atom). This value is about two orders of magnitude lower spin suscepti-
bility as compared to other metallic carbon phases such as, e.g., K3Cgy (xs ~ 107% emu/g,
Ref. [112]) or the KCg alkali intercalated graphite x; &~ 6.4 - 1077 emu/g (Ref. [113] and
Ref. [81]). This difference stems from the significantly lower carrier density in our sample
(n ~ 1.1-10*! em™®). As an important benchmark of the CESR, the above calculated
DOS value is correlated to theoretical estimates and other experimental results.

The density of states in the Fermi-gas model only depends on the free carrier concentration
(n) and the band effective mass (m*) through the Fermi wavenumber: kp = (37%n)'/3.
The corresponding Fermi energy is Fr = h%k2/2m*. The present nominal carrier density

with the free electron mass [12] corresponds to a Fermi energy of Er = 0.39 eV. The DOS

at the Fermi energy reads:

1 /2m*\*? 1
D(Er) = o2 ( ) EF? (4.5)
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in units of states/eV - C-atom, where ¢ = 1.76 - 10*> C-atom/cm? is the atomic density
of diamond. This gives D(Ey) = 2.4 - 1072 states/eV - C-atom.
Density functional theory (DFT) calculations® within the rigid band approximation were
also performed (detailed in Appendix A). n &~ 6400 ppm boron content yields D(Er) =
3.6 - 1072 states/(eV - C-atom).
These theoretical estimates show a significantly larger density of states. Therein, the
nominal boron concentration of the MPCVD process was used, i.e., these do not take into
consideration the tendency of boron dimer formation (see Sec. 3.1) [52].
In order to calculate the DOS from angle-resolved photoemission spectroscopy (ARPES)
measurements [13], the Fermi surface is regarded. Within the Fermi-gas model, the density
of states can be rewritten as

D(Er) = %ﬁl, (4.6)

w2 vph o

where vp is the Fermi velocity. The given values of vp and kg from Ref. [13] for '/BDD2’
(T. = 2.5 K) and 'BDD3’ (T, = 7 K) samples give D(Er) = 3.9-1073 states/(eV - C-atom)
and D(Er) = 7.8 - 1072 states/(eV - C-atom).
Figure 4.6 depicts the DOS value of our sample and those determined from ARPES
measurements as a function of 7,.. The empirical comparison can be justified by the BCS
equation Eq. (2.1). The good agreement between the experimental values confirms the

relevance of the boron dimers. In addition, the low DOS values reason the difficulty to
increase T¢. in BDD to the highest predicted value of 55 K [51].

4.2 Validity of the Elliott-Yafet relation

In the following, I discuss the validity of the Elliott-Yafet relation in BDD using the cor-
rected Beuneu-Monod plot. In the original Beuneu-Monod plot [78] presented in Sec. 2.3.3,
the linear scaling was established between AB/p and (Ag)?. Herein, a corrected scaling
is used which takes into account the variation of w, among metals [81], finding a linear
scaling between AB/ow?) and (Ag)?.

In Fig. 4.7, the corrected Beuneu-Monod plot is shown together with the present results
for BDD. Clearly, BDD lies out of the general trend observed for most metals. The gran-
ularity of BDD samples hinders measurement of the intrinsic g [114], which leads to an
overestimate of the resistivity and can contribute to the anomalous position of BDD in
the Beuneu-Monod plot.

As remarked in Sec. 2.3.3, the spin relaxation in polyvalent metals like Be and Mg was

3DFT calculations were performed by Janos Koltai.



VALIDITY OF THE ELLIOTT-YAFET RELATION 40

10° 10" 10
2
(Ag)

10

Figure 4.7: YAB/ gaowfﬂ as a function of Ag? (corrected Beuneu-Monod plot [81])for elemental
metals [78] (o) and BDD (A). The resistivity data for BDD is taken from Ref. [44]. Solid and
dashed lines correspond to a = 1 and 10, respectively. We use a plasma frequency of wy,) = 0.8 eV
after Ref. [54].

explained in the “hot-spot” model [83]. The anomalously long T} measured in BDD might

be caused by a similar effect.



Chapter 5
Summary

In this Master’s thesis, I presented a summary of my Master’s research project on the
spin-relaxation properties of superconducting boron-doped diamond (BDD).

The thesis provides an overview of the studied material, the theory of the superconduc-
tivity in BDD, the theoretical and experimental aspects of spin dynamics in metals, the
instrumentation, and the characterization of the samples.

The presented ESR measurements indicated three different paramagnetic centers with
2.2 ppm spin density. At high temperature (above 75 K), a fourth signal was identified,
which is assigned to conduction electrons in BDD. The identification of the CESR signal
was based on the temperature dependence of the ESR signal intensity and its absolute
magnitude, which is related to the density of states at the Fermi level. The low DOS
value found herein is in agreement with ARPES measurements.

The validity of the Elliott-Yafet spin-relaxation mechanism was discussed in BDD. An
anomalous relationship was observed between the g-factor and the spin-relaxation time,
which calls for further theoretical studies. The observed spin-relaxation rate is orders of
smaller than the conventional theory predicts, which enhances the application potential
of boron-doped diamond for spintronics.

My work on this project resulted in a published paper [1], a poster presentation at
IWEPNM 2012, and a conference proceedings [100].
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DFT calculations
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Figure A.1: Density of states calculated with DFT methods. (a) Density of states of neutral
diamond as a function of number of electrons per unit cell (solid line) within LDA approximation.
Density of states with optimized geometry upon adding extra charges to the system (M) (b) Zoom
on the calculated DOS for neutral diamond. The charge state for our BDD sample is labeled by

arrow at 7.9872.
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Density functional theory calculations! (DFT) with the Vienna ab initio Simulation
Package (VASP) [115] within the local density approximation (LDA) were also performed
to calculate the density of states of neutral diamond (see Fig. A.1). The projector
augmented-wave method was used with a plane-wave cutoff energy of 750 eV and a
k-point set of 30x30x30 I'-centered Monkhorst-Pack grid.

A series of geometry optimization and density of states calculation with extra charges
added (removed) from the system were also performed. The results are shown in
Fig. A.1(a). The agreement between the DOS calculated for neutral and charged dia-
mond firmly supports the validity of the rigid band approximation at low doping levels.
The boron content of 6400 ppm yields D(Er) = 3.6-1072 states/(eV-C-atom) for the DOS.

IDFT calculations were performed by Jénos Koltai.
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