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Graphene appears to be an excellent candidate for spintronics

due to the low spin–orbit coupling in carbon, the two-

dimensional nature of the graphene sheet, and the high electron

mobility. However, recent experiments by Tombros et al.

[Nature 448, 571 (2007).] found a prohibitively short spin-

decoherence time in graphene. We present a comprehensive

theory of spin decoherence in graphene including intrinsic,

Bychkov–Rashba, and ripple related spin–orbit coupling. We

find that the available experimental data can be explained by an
intrinsic spin–orbit coupling which is orders of magnitude

larger than predicted in first principles calculations. We show

that comparably large values are present for structurally and

electronically similar systems, MgB2 and Li intercalated

graphite. The spin-relaxation in graphene is neither due to the

Elliott–Yafet nor due to the Dyakonov–Perel mechanism but a

smooth crossover between the two regimes occurs near the

Dirac point as a function of the chemical potential.
� 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
1 Introduction The discovery of graphene [1] stimu-
lates interest due the fundamentally and technologically
important properties. A potential application is spintronics [2],
i.e., when the spin degree of freedom of electrons is utilized as
information carrier. The principal parameter governing
spintronic utility is the spin-relaxation time (also called as
spin-lattice relaxation time), ts, which characterizes how a
non-thermal equilibrium spin state decays. For applications, ts

longer than 0.1–1ms is required. An often cited concept is that
‘‘pure materials made of light elements’’ can reach this limit.
The huge mobility of charge carriers in graphene (approach-
ing 106 cm2/Vs [3]), the lightness of carbon, and the low-
dimensionality of graphene are the reasons for the high
expectations for its spintronic applications. This is supported
by the long spin relaxation time in light metals such as, e.g.,
Li [4] or in low-dimensional conductors [5].

It therefore came as a surprise that ts as short as 60–
150 ps are observed in spin transport experiments on
graphene [6, 7], which renders it unusable for spintronics.
The understanding of this result is therefore of great
importance. More recent similar spin transport experiments
indicate that the sample preparation has an important effect
on the measured ts [8]. Here, we intend to make no judgment
on the validity of the spin transport experiments and we focus
on the results of Ref. [6] and we consider it as being intrinsic
to graphene. Alternative scenarios suggested the effect of the
substrate [9] or impurities [10] to explain the unexpectedly
small ts found in Ref. [6].

Theories of spin relaxation are split into two classes:
materials with inversion symmetry (e.g., Na or Si) and to
materials where the inversion symmetry is broken either in
the bulk (e.g., III–V semiconductors such as GaAs) or in two-
dimensional heterostructures. The Elliott–Yafet (EY) theory
[11, 12] explains the former case, where only intrinsic (i.e.,
atomic) spin–orbit coupling (SOC) is present, Li, and
predicts that spin (Gs ¼ �h=ts) and momentum relaxation
rates (G ¼ �h=t, t is the momentum relaxation time) are
proportional: Gs ¼ aiðL2

i =D
2ÞG. Here ai ¼ 1 . . . 10 is band

structure dependent [4], D is the energy separation of a
neighboring and the conduction band.
� 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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The relaxation for broken inversion symmetry is
explained by the Dyakonov–Perel (DyP) theory. It applies
either when the symmetry breaking is in the bulk (the
Dresselhaus SOC [13], LD) or when it happens for a
heterolayer structure (the Bychkov–Rashba SOC [14, 15],
LBR). The DyP theory shows that the spin and momentum
relaxation rates are inversely proportional:
Gs ¼ aD=BRL

2
D=BR=G, where aD=BR � 1.

A link between the EY and the DyP was found recently
[16]: for metals with inversion symmetry but rapid
momentum scattering, the generalization of the EY theory
leads to Gs ¼ aiðL2

i =ðD2 þ G2ÞÞG, which gives a DyP like
spin relaxation when G>D.

Three types of SOC are present in graphene: intrinsic,
BR (due to a perpendicular electric field), and the ripple
related (which is due to the inevitable ripples in graphene).
However, the role and magnitude of these SOC parameters is
a debated issue. Estimates for the intrinsic SOC ranges two
orders of magnitude; 0.9–200meV [17–19], whereas value
of the BR SOC appears to be settled to 10–36meV per V/nm
(Refs. [18] and [17], respectively). The effect of the substrate
for the spin relaxation is also unsettled [9]. Given this debate,
a description is required which enables comparison with the
spin transport data.

Here, we present a theory of spin relaxation in graphene
including intrinsic, BR, and ripple related SOC. We analyze
the spin transport data from Refs. [6, 7, 20] and we find that
the intrinsic SOC dominates the relaxation with a large,
unexpected magnitude. We discuss two similar honeycomb
systems; MgB2 and LiC6, and show that they exhibit similar
intrinsic SOC. The result predicts a strong anisotropy of the
spin relaxation time, which is, however, not fully supported
by more recent experiments [7, 20].

2 Results and discussion Low energy excitations
around the K point of the Brillouin zone are described by a
two-dimensional Dirac equation:
� 20
H ¼ vFðsxpx þ sypyÞ; (1)
with the vF � 106 m/s Fermi velocity [1]. The spin–orbit
interaction in graphene is given by [17]:
HSO ¼ LiszSz þ
LBR þ LrippleðrÞ

2
sxSy � sySx
� �

; (2)
where Li, LBR, and Lripple are the SOC’s of the intrinsic, BR,
and ripple terms, respectively. Lripple(r) is Gaussian
correlated random variable, hLrippleðrÞLrippleðr0Þi � dðr� r0Þ.

The spin relaxation rates induced by these SOC’s are
additive in lowest order provided
maxðLi; LBR; LrippleÞ � max ðG; mÞ; (3)
which means
Gs ¼ Gs;i þ Gs;BR þ Gs;ripple: (4)
The contributions from the intrinsic (Gs,i), BR (Gs,BR),
and ripple (Gs,ripple) relaxation rates are obtained using the
11 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Mori–Kawasaki formula similar to that used in Ref. [21]
considering the conical band structure and the K, K0

degeneracy:
Gs;i ¼ dn; k
L2
i arctan ðm=GÞ
2pm emðm; GÞ G; (5)
s;BR ¼
2dn;? þ dn;k
� �

L2
BR

16pem ðm; GÞ 1 þ m

G
þ G

m

� �
arctan

m

G

� �� �
;

(6)
Gs; ripple ¼
2dn;? þ dn;k
� �

p

32
L2
rippler ðm; GÞ; (7)
n ¼ k, or ? is the spin polarization direction with respect to
the graphene plane; e.g., n ¼ k in the spin transport
experiments [6]. Here, m is the chemical potential andemðm; GÞ ¼ � G

p
ln m2þG2

D2

� �
þ jmj 1� 2

p
arctan G

jmj

� �� �
is the

pseudo chemical potential (D� 3 eV is the cutoff in the
continuum theory) which appears in the expression
of the density of states (DOS), rðm; GÞ, with finite
m and G:
rðm; GÞ ¼ 2Acem ðm; GÞ
p�h2v2

F

; (8)
with Ac ¼ 5:24 A
� 2

=ð2 atomsÞ being the elementary cell and
rðm; GÞ is measured in units of states/eV atom.

The intrinsic contribution disappears when spins are
polarized perpendicular to the plane and the BR and ripple
terms have a 2:1 anisotropy for the ?: k directions. For
the intrinsic part,Gs;i � ðL2

i =ð2mÞ
2ÞG whenm � G, which is

an Elliott–Yafet like result with ai¼ 1 since the conduction
band is separated from the nearest lying valence band (at the
Fermi-wavenumber) by D¼ 2m. In the vicinity of the Dirac
point, DP (i.e., m� 0 and G finite) it returns a Dyakonov–
Perel like result of Gs;i ¼ ðL2

i =½4 ln ðD=GÞ�Þð1=GÞ. This is in
agreement with the generalized Elliott–Yafet theory which
predicts a similar crossover when the momentum scattering
rate overcomes other energy scales [16]. Interestingly, the
intrinsic contribution can be well fitted with a Lorentzian:
Gs;i � a0ðL2

i G
0=ðm2 þ G

02ÞÞ, where a0 � 0:2 . . . 0:4 and
G
0=G � 1 . . . 2 for typical values of m and G.

The BR term is only present if a perpendicular electric
field, E, is applied, which induces a BR SOC of LBR ¼ kE
with k values between 10 [18] and 36meV/(V/nm) [17]. The

electric field changes m through: m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np�h2v2

F

p
where

n¼ bE is the carrier density and b¼ 0.22 ðVnmÞ�1
for SiO2

gate insulator [22]. This yields the BR SOC as a function of

m: LBRðmÞ � km2 3:4V=eV2
nm.

The ripple relaxation contribution depends on G only if
m � G, where it resembles an EY relaxation:
Gs; ripple / L2

rippleG ln ðD=GÞ.
www.pss-b.com
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Figure 1 (online color at: www.pss-b.com) Experimental (sym-
bols, from Ref. [20]) and calculated spin lattice relaxation rates,Gs,
as a function of m in graphene for in-plane spin polarization calcu-
latedwithG¼ 75 meVafterRef. [20].Upper (lower) solidcurvesare
the maximal (minimal) estimates for the intrinsic contributions with
SOCvalues fromRefs. [17–19], respectively.Dottedcurve is theBR
contribution with the average of SOC values from Refs. [17, 18].
Dashed curve is the ripple contribution with Lripple from Ref. [17].
The upmost thin solid line is a fit to the data as explained in the text.

Figure 2 (onlinecolorat:www.pss-b.com)Thesameexperimental
data as in Fig. 1 shown along with the fit (solid curve). For compar-
ison, Gs calculated with G¼ 12 meV (dashed curve) is shown.
Arrows depict the crossover of the DyP and EY mechanisms as a
function of m.
In the following, we analyze the available spin transport
data [6, 7, 20] in the framework of the above calculation.
Values of ts ¼ 60 . . . 125 ps were found around the charge
neutrality point (depending on the sample), with a typical
G� 75 meV [20]. Figure 1 shows the measured and
calculated spin relaxation rate data for n ¼ k. G¼ 75 meV,
that is independent of m, was used for the calculated curves.
First principles calculations of the intrinsic SOC scatter more
than two orders of magnitude with values of 0.9meV
[17, 23, 24], 24meV [18], and 200meV [19]. Values
for the BR SOC, LBR¼ kE, vary between k ¼
10 . . . 36 meV=ðV=nmÞ. This gives rise to the minimal and
maximal estimates for both types of the contributions as
shown in Fig. 1. The ripple SOC was estimated to be 17meV
in Ref. [17].

Clearly, the first principles based relaxation rates fall
short of explaining the experimental observation. Of the
three contributions, only the intrinsic one has a m
dependence that mimics the experiment, whereas the other
two shows the opposite. It may appear that a fit to the data is
ill defined, given the relatively large number of free
parameters (G and 3 L’s). However, to our surprise, the fit
consistently yields the same, robust set of parameters,
irrespective of starting values or the method used
(least squares fitting or combined with a simulated
annealing), which are: Li¼ 3.7(1) meV, LBR ¼ Lripple ¼ 0,
G¼ 120(5) meV. This robustness originates from the
qualitative difference between the m dependence of the
different contributions. The obtained values satisfy
the criterion for the perturbative approach and the value
of G determined herein is in agreement with that obtained
in Ref. [20].
www.pss-b.com
The intrinsic SOC opens a bandgap of Li in the excitation
spectrum [18, 19] therefore it is natural to ask: why is not this
gap observed experimentally? Two interrelated answers are
in order: first, best quality samples to date are ballistic only
on the (sub)micron scale, giving a momentum scattering rate
of the order of meV’s (or bigger), which can mask the gap
[25]. Second, charge inhomogeneities (the so-called pud-
dles) prevent us from reaching the Dirac point, the average
minimal charge density is estimated [26] as 109 cm�2, which
gives an average m� 4 meV, capable of overwhelming the
obtained gap.

The present analysis allows for the design of graphene
based spintronic devices. For spins polarized perpendicular
to the graphene plane, the intrinsic contribution vanishes thus
resulting in a substantially longer spin relaxation time. For
spins polarized in the graphene plane, Fig. 2 shows that
around the Dirac point purer samples (i.e., smaller G)
decreases ts rather than increasing it, thus deteriorating
performance. This, somewhat counterintuitive phenomenon,
is the consequence of the Dyakonov–Perel like behavior of
the intrinsic contribution around the DP.

The large value obtained for the intrinsic SOC is
surprising as it is an order of magnitude larger than the
largest theoretical estimate [19] and up to 3 orders of
magnitude larger than other results [17, 23, 24]. However,
given that the experimental m dependence of Gs dictates the
dominant role of the intrinsic coupling, Li yields necessarily
a large value. In the following, we consider two similar
systems, MgB2 and Li doped graphite and show that therein
similar values of the intrinsic coupling are obtained.

In MgB2, the boron atoms form a honeycomb lattice with
four p-shell electrons, such as in graphene, which highlights
the similarity of the two materials. Therein, an intrinsic SOC
of LiðMgB2Þ ¼ 2:8 meV of the p orbitals was found [21].

It was shown by Grüneis et al. [27] and confirmed [28]
that alkali atom intercalated graphite is an excellent model
� 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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system of biased graphene as the two-dimensional electron
dispersion is retained due to the weak interlayer coupling.
The Li intercalated stage I graphite compound LiC6 [29] is
particularly suitable to determine the intrinsic SOC as Li is
the lightest alkali metal and its contribution to the spin
relaxation is undetectable [4]. LiðLiC6Þ ¼ 1:1 meV was
obtained for the intrinsic SOC in LiC6 [30]. The similar value
of the intrinsic SOC in these three systems leads us to
conclude that the intrinsic SOC is properly determined in
graphene herein.

3 Summary In summary, a theory of spin relaxation in
graphene is presented including intrinsic, Bychkov–Rashba,
and ripple related spin–orbit coupling contributions.
Analysis of the available spin transport data yields that the
intrinsic contribution dominates. Interestingly, tuning the
chemical potential makes the appearance of the relaxation
change from the Dyakonov–Perel to the Elliott–Yafet spin
relaxation mechanism. We finally note that a fruitful avenue
to decide about the true magnitude of the spin-relaxation
time could be its direct measurement by means of electron
spin resonance spectroscopy such as reported in Ref. [31].
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