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We study the nuclear magnetic resonance (NMR) properties of

graphene. The interaction between nuclear spins and the

orbital motion of Dirac electrons is strongly modified by the

linear electronic dispersion with respect to its canonical form.

The NMR shift and spin-lattice relaxation time are calculated

as function of temperature, chemical potential, and magnetic
field for clean and impure graphene, and three distinct regimes

are identified: Fermi-, Dirac-gas, and extreme quantum limit

(EQL) behaviors. A critical spectrometer assessment shows

that NMR is within reach for fully 13C enriched graphene of

reasonable size.
� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
1 Introduction Nuclear magnetic resonance (NMR)
is a powerful analytical tool [1, 2] and an architecture for
quantum information processing [3, 4] at the same time. Both
of these applications are possible due to the relatively weak
interaction of the nucleus with its environment. When
employed as an analytical tool, this weak interaction is
sufficient to probe the electronic state of its vicinity, which
yields information about the local electron bonds or about the
correlated behavior of electrons as e.g., in superconductors
[5]. NMR quantum computing exploits that the nuclei are
well isolated from the environment thus there is a longer time
window for the manipulation and detection of the nuclear
quantum state.

For both kinds of applications, the important NMR
measurables are the shift of the NMR resonance with respect
to a standard, and the decay of the longitudinal magnetiza-
tion to its equilibrium value, the spin-lattice relaxation time,
T1. These have been extensively studied in solid state
systems both theoretically and experimentally [1, 6].
However, the body of NMR experiments and theory were
focused on the behavior of three-dimensional systems which
stemmed from the unavailability of stable, inherently two-
dimensional materials, and from the relatively weak
sensitivity of NMR spectroscopy.

The isolation of graphene, a single sheet of carbon atoms
in a hexagonal lattice [7], enables studies of an exactly two-
dimensional system. Its quasiparticles follow a linear band
dispersion, causing the electrons to behave as massless Dirac
fermions, which gives rise to unique transport and magnetic
properties [8]. An important property of graphene is that its
Fermi energy, EF and the corresponding density of states
(DOS) on the Fermi surface can be altered by a bias or by
chemical doping which greatly affects its properties.

The NMR measurables are most affected by the
surrounding electrons through the the electron-nuclear
hyperfine interaction (HFI). The standard, text-book form
of the HFI of nuclei and conduction electrons leads to the
Hamiltonian [6]:
HHFI ¼
m0

4p
g�hgnI m�

B

r� p

�hr3

h
þ mB

Sr2�3rðSrÞ
r5

� 8p

3
SdðrÞ

� ��
:

(1)
Here, the first term is due to the electron orbital
magnetism, the second is due to the electron spin-dipole
interaction, and the third is the so-called Fermi-contact
interaction. m0 is the permeability of free space, gn the
nuclear gyromagnetic ratio, I the nuclear spin, g � 2 the g-
factor of the electrons. S, p, and r are the electron spin,
momentum, and vector operators. mB is the Bohr magneton
and m�

B ¼ m=m�mB is the effective orbital Bohr magneton
[9], wherem� is the effective band mass andm is the mass of a
free electron.
� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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We derive the hyperfine Hamiltonian for graphene,
paying special attention to the orbital and spin contributions.
Based on this, we calculate the Kinght shift and the spin-
lattice relaxation time. We also discuss the feasibility of bulk
NMR spectroscopy on graphene.

2 Electron–nucleus interaction The interaction
between the nuclear spins and conduction electrons is most
readily formulated following Abragam [6] by treating the
nucleus as a magnetic dipole with m ¼�hgnI, and investi-
gating its effect on the conduction electrons by introducing
the kinetic momentum as p ! pþ eA and through the
Zeeman term. The vector potential created by the nuclear
dipole is
Figu
alen
equi
perp

� 20
AðrÞ ¼ m0

4p

m� r

r3
; (2)
This gives rise to an interaction between the nuclear spin
and the orbital motion and spin of the conduction electrons.
The Hamiltonian accounting for the low-energy excitations
of graphene around the K point is the two-dimensional Dirac
equation, given by [8]
H ¼ yF sxpx þ sypy
� �

; (3)
where vF ¼ 106 m/s is the Fermi velocity of graphene,
and the pseudospin variables (Pauli matrices, s) spring
from the two-sublattice structure of the honeycomb
lattice (Fig. 1). Its eigenenergy is EaðkÞ ¼ a�hvFjkj, where
a ¼ � corresponds to the conduction and valence band
(upper and lower Dirac cone). The corresponding
eigenfunction is
fakðrÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi

2NAc

p expðikrÞ a

expði’kÞ

� �
; (4)
’k is the angle of k with the kx axis,
Ac ¼ 3

ffiffiffi
3

p
a2=2 � 5:24 � 10�20 m2 is the area of the unit

cell, a ¼ 1:42 Å is the C–C bond length, N is the number of
unit cells. Since only the x and y components of the
momentum appear here, it suffices to determine the
corresponding components of the vector potential:
Ax ¼ � m0

4p
mzy=r

3 and Ay ¼ m0
4p
mzx=r

3. Substituting this
into the Dirac Hamiltonian, Eq. (3), we get for the
KK’

re 1 (online color at: www.pss-b.com) The two non-equiv-
t Dirac cones are shown on the honeycomb lattice. The non-
distant equienergy levels denote the Landau level structure in
endicular magnetic field.
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effective Hamiltonian describing the electron–nucleus
interactions as
Z

I;graphene¼
m0

4p
�hgnIz

r� j

r3

� �
z

þ m0

4p
gmB�hgnI

Sr2�3rðSrÞ
r5

� 8p

3
SdðrÞ

� �
;

(5)
where j ¼ evFs is the electric current operator in graphene.
Here, s is a vector of the Pauli matrices. The first term
describes the interaction of the nucleus with the orbital
motion of the Dirac electrons [10], and since the motion of
the electrons is restricted in the x�y plane, the orbital
magnetization, r� j is perpendicular to it, thus interacts
only with Iz. The spin-dipole and Fermi contact terms are
unchanged.

The orbital term in Eq. (5) differs significantly from the
usual form, Eq. (1). First, the numerical prefactors are
different and second, the operator form of the interaction is
different: the orbital magnetization (r� j) replaces the
angular momentum operator (r� p). The peculiar form of
the current operator for Dirac electrons j � s is responsible
for the jittery motion of the center of mass coordinate known
as Zitterbewegung [11], and this also determines the orbital
part of the interaction. Eq. (1) can be deduced formally from
Eq. (5) by using j ¼ ep=m� for a normal metal.

A unique property of the orbital magnetic moment of
graphene is, that it remains invariant in an applied magnetic
or gauge field. In a normal metal, the angular momentum
operator and the corresponding orbital magnetic moment are
gauge dependent through the introduction of a vector
potential, p ! pþ eAðrÞ. As a result, the usual angular
momentum operator contains a term proportional to the
applied magnetic field, yielding additional contributions to
the nuclear spin relaxation [12]. In graphene, however, this
term is not present and the form of j is insensitive to the
vector potential. We mention that the proper orbital angular
momentum of Dirac particles is still r� p in the sense that it
is responsible for rotations in the x�y plane, which differs
from the orbital magnetization.

The linearity of the Dirac equation in momentum also
implies that there are no higher order terms in the vector
potential [e.g., AðrÞ2

, which naturally occurs for the
quadratic dispersion], and therefore an effective interaction
between nuclear spins mediated by conduction electrons
does not exist.

The second quantized form of the orbital part of the
interaction is obtained using the eigenfunctions of the Dirac
equation, Eq. (4). Its matrix elements are given by
drf�
a0k0 ðrÞ

xsy�ysx

r3

� 	
fakðrÞ

¼
Z

dxdy

2NAc

expðiðk�k0ÞrÞ
r3

� �a0expði’kÞðyþ ixÞ þ a expð�i’k0 Þðix�yÞ½ �:

(6)
www.pss-b.com
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Thus, we are left with integrals of the type
www
Int ¼
Z Z

dxdy
expðiprÞx
ðx2 þ y2Þ3=2

; (7)
By changing x ¼ jyjsinhðtÞ, we obtain
Int ¼ 4i

Z1
0

Z1
0

sinðpxy sinhðtÞÞcosðpyyÞ
y

sinhðtÞ
cosh2ðtÞ

dydt

¼ i2ppxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
x þ p2

y

q :

(8)
Putting all this together, we obtain the orbital part of the
interaction as
Horb ¼
Jorb
N

Iz
X
kk0aa0s

f ðk; k0 ;a;a0Þcþkasck0a0s; (9)
where Jorb ¼ m0�hgnevF=2Ac, and
f ðk; k0;a;a0Þ

¼ ðaa0�exp½ið’k�’k0 Þ�Þðak þ a0k0Þ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ k02�2kk0cosð’k�’k0 Þ

p ; (10)
and cþkas creates a quasiparticle with energy EaðkÞ and real
spin s. A closer examination of the kernel reveals that it
depends only on the relative angle of the incoming and
outgoing momenta (’k�’k0) and on the ratio of the absolute
values of momenta (k=k0). At low temperatures, only
electrons living close to the chemical potential matter, i.e.,
EaðkÞ � Ea0 ðk0Þ, which leads to k � k0 and a ¼ a0. The
interaction is bounded as jf ðk; k0;a;a0Þj � 1. The magni-
tude of the orbital term can be estimated as Jorb � 21 MHz
using gð13

CÞ=2p ¼ 10:7 MHz/T.
We note, that the comparison of Eqs. (1) and (5) allows to

identify formally the effective orbital Bohr magneton of
massless Dirac fermions as m�

B � evFa. Interestingly, it can
be understood from classical considerations: a particle with
charge emoving on a circular orbit with radius r and velocity
v induces a magnetic momentm ¼ evr=2 that is similar to the
above value of m�

B after identifying r � a.

3 Nuclear spin relaxation time and Knight
shift The effective interaction describing the HFI in
graphene is obtained from Eq. (5) as
HHFI;graphene ¼ SAI þ Horb; (11)
where A is a 3� 3 tensor with diagonal elements. Of these,
the traceless elements are due to the spin dipole interaction
as Adipðx; yÞ : AdipðzÞ ¼ �Adip : 2Adip and the scalar term,
Aiso, is given by the isotropic Fermi contact interaction. First
principles calculations [13] gave Adip ¼ 73 MHz and
Aiso ¼ �44 MHz, which gives ð�117;�117; 102ÞMHz
for the diagonal elements of A. We note that the first
.pss-b.com
principles value of Adip agrees well with the Adip ¼ 91 MHz
is obtained for the pz orbital of a free carbon atom [1, 14],
which confirms that it is indeed the relevant orbital in
graphene.

For a given direction of the magnetic field, terms of Eq.
(11) perpendicular to the field contribute to relaxation and
terms parallel to it contribute to the Knight shift [6, 12]. The
orbital interaction involves only Iz, thus it affectsT1 when the
magnetic field is applied within the graphene plane (x�y),
but it does not influence the Knight shift. In a magnetic field
perpendicular to the graphene plane, the orbital interaction
cannot flip the nuclear spin and does not cause relaxation.
Also its contribution to the Knight shift vanishes.

The spin-lattice relaxation rate and the Knight shift,K, in
a given direction (i ¼ x; y; z) of the magnetic field are [15]
1

T1T

� �
i

¼ C2
i pkB
�h

Z1
�1

rðE�hZÞrðE þ hZÞdE
4kBT cosh2 ðE�mÞ=2kBT½ �

;

(12a)
Ki ¼
Aige

2gn

Z1
�1

rðE þ hZÞ þ rðE�hZÞ½ �dE
8kBT cosh2 ðE�mÞ=2kBT½ �

; (12b)
with C2
i ¼

P
n 6¼i ðA2

n=2 þ dn;z2J
2
orbÞ, n ¼ x; y; z, ge is the

gyromagnetic ratio of electrons, hZ the Zeeman energy of
the conduction electrons, rðEÞ the quasiparticle DOS, and m
is the chemical potential. T1 and K along an arbitrary
direction is readily obtained by usual angular dependent
combinations [12]. The orbital interaction contributes to Eq.
(12a) by an additional term proportional to 2J2

orb for in plane
field (the factor 2 comes from the spin degeneracy), on top
of the spin interactions. The relaxation time for out of plane
field due to spin–spin interaction (without the orbital term)
would be 15% shorter than for in plane fields. However, the
orbital interaction shortens the relaxation time for in plane
field, which could result in an almost isotropic nuclear spin
relaxation or a shorter in plane relaxation than for
perpendicular field. More precise statements would require
the first principles calculation [13] of Jorb. The Knight shift
changes sign from in plane to out of plane fields, and drops
by 15% in magnitude. We drop the i index from Ci in the
following.

The magnitude of Zeeman energy is below 1 meV that is
always smaller than one of kBT , m, or G (the latter is due to
impurities), which allows us to neglect it in the following.
For ultra-clean samples at low temperature and in the vicinity
of the Dirac point (DP), the Zeeman energy replaces m.

We distinguish two scenarios for the DOS: (i) absence of
Landau levels and (ii) where the presence of Landau levels is
important. Scenario (i) occurs for three cases: when the
magnetic field is in the plane, when the magnetic field is
arbitrary but level broadening due to G or the temperature
makes the Landau levels undistinguishable around m [the
criterion is v2

FeB�h=m � maxðG; kBTÞ], or in the vicinity of
� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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the DP point (i.e.,m is small) when the lowest Landau level is
significantly broadened due G or the temperature [the
criterion is vF

ffiffiffiffiffiffiffiffiffiffi
2eB�h

p
� maxðG; kBTÞ].

For scenario (i), the magnetic field-free DOS can be used
to evaluate the above expressions and it reads as:
� 20
rðEÞ ¼ AcjEj
2p�h2v2

F

; (13)
in units of states=ðeV 	 spin 	 C-atomÞ. The resulting
relaxation rate using the Dirac description is
1

T1T

� �
¼ C2 pkB

�h
r2ðmÞ þ r2 pkBTffiffiffi

3
p

� �� �
; (14)
which increases as max(m2; ðpkBTÞ2=3). Away from the
DP, the chemical potential dominates, and the temperature
becomes important only upon approaching the DP.

Exactly at the DP, the relaxation time diverges as
T1 � T�3, therefore the nuclear spins are not relaxed by
conduction electrons at T ¼ 0 due to the absence of charge
carriers at the charge neutrality point. In the presence of
impurities, the DOS reads as [16]
rGðEÞ ¼
Ac

2p�h2v2
F

�G

p
ln

E2 þ G2

D2

� ��

þ jEj 1� 2

p
arctan

G

jEj

� �� ��
;

(15)
with G the scattering rate and D the cutoff in the continuum
theory. Therefore, the aforementioned divergence of the
clean system weakens to T1 � ðG2 ln2ðD=GÞTÞ�1

, reprodu-
cing the Fermi-gas behavior. Since the DOS is finite at the
DP due to impurities, the Dirac nature of the quasiparticles
is lost at this level.

The Knight shift is evaluated as
K ¼ A
ge

2gn

r 2kBT ln 2cosh
m

2kBT

� �� �� �
: (16)
It can be approximated by K�max(2kBTln2; jmj).
Impurities provide a finite DOS even at the DP, therefore
the Knight shift stays finite there as K � GlnðD=GÞ.

Concluding scenario (i), we give 1=T1T for two special
cases: graphene biased with a gate and graphene intercalated
with alkali atoms. For gate biasing, the density of charge
carriers, n is controlled by the gate voltage, Vg through [17]
n ¼ aVg with a ¼ 7:2 � 1010 cm�2/V. When m 
 kBT the
nuclear spin relaxation rate is
Figure 2 (online color at: www.pss-b.com) The nuclear spin relax-
ation rate (main figure) and the Knight shift (inset) are shown with
G ¼ 0:1EL andD ¼ 1000EL as a function of the chemical potential.
1

T1T

� �
¼ kBC

2A2
c

4�h3v2
F

aVg

� 4 � 10�8Vg ðVKsÞ�1
h i

: (17)
The blue solid/red dashed line refers to the presence/absence of
magnetic field at T ¼ 0, the black dash-dotted line corresponds to
kBT ¼ EL in the presence of magnetic field. IncreasingmorTmakes
the Landau level structure disappear, and scenario (ii) is replaced by
scenario (i).
For scenario (ii), Landau level formation is important,
and the continuous spectrum is replaced by discrete Landau
levels as Ena ¼ aEL

ffiffiffi
n

p
where a ¼ �, n is non-negative

integer, EL ¼ vF
ffiffiffiffiffiffiffiffiffiffiffiffi
2�heBz

p
is the Landau scale, and Bz is the
10 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
perpendicular component of the magnetic field. With this,
the DOS reads as [16]
rðEÞ ¼ Ac

2p�h2v2
F

1

2p

GE2
L

E2 þ G2
�4Gln

EL

D

� ��

�2Im ðE þ iGÞC 1�ðE þ iGÞ2

E2
L

 !( )#
;

(18)
where CðxÞ is Euler’s digamma function, and reduces to Eq.
(14) for clean systems with vanishing magnetic field. The
nuclear spin relaxation rate and the Knight shift are plotted
in Fig. 2 separately as a function of the chemical potential.
These display the characteristic de Haas–van Alphen like
oscillatory behavior at high magnetic field and low chemical
potential and temperature, that we refer to as the extreme
quantum limit (EQL).

4 Korringa relation Calculation of the relaxation rate
and Knight shift allows to test the validity of the Korringa
relation, i.e., whether 1=T1TK

2 ¼ const holds. The Korringa
relation is valid for a Fermi-liquid. For non-interacting
fermions, its value is given by

It is shown in Ref. [18] that neither dipolar nor orbital
anisotropy affects the Korringa relation ð1=T1TK

2ÞF ¼
4pkBðgn=geÞ2=�h. For Dirac electrons and for scenario (i),
in the limit of ðm; kBTÞ 
 ðG; hZÞ, which is referred to as the
scaling limit, it reads as
1

T1TK2
¼ 4pkB

�h

gn

ge

� �2
C2

A2

� �
F

m

kBT

� �
; (19)
www.pss-b.com
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Figure 3 (online color at: www.pss-b.com) The Korringa relation,
normalized to its Fermi-gas value, is shown. It satisfies to usual
Korringa relation for x 

 kBT , and exhibits additional terms for
m � kBT .For largeT, it enhancesandsaturates toap2=3 ln2ð4Þ times
bigger value.

Figure 4 (online color at: www.pss-b.com) The Korringa relation,
normalized to its Fermi-gas value, is shown in the presence of Landau
levels for G ¼ 0:1EL, which allows for the visibility of independent
Landau levels for small level index. The temperature was varied as
kBT=EL ¼ 0.05, 0.1, 1, and 20 from bottom to top. For temperatures
comparable to G, separate peaks indicate the Landau level structure,
andthecurvescrossovertothefield-freescalinglimitwithincreasingT.
which depends only on the ratio of m and T, and FðxÞ is a

universal scaling function
www
FðxÞ ¼ 3x2 þ p2

12 ln2½2coshðx=2Þ�
; (20)
Figure 5 (online color at: www.pss-b.com) The schematic ‘‘phase
diagram’’ of graphene according to NMR, the phases are separated
by solid lines. The boundaries denote crossovers. With increasing
disorder, the solid lines move to the dashed ones, and the Fermi gas
region gains territory.
which is even in x and satisfies Fð0Þ ¼ p2=3 ln2ð4Þ � 1:71
and Fð1Þ ¼ 1, and is shown in Fig. 3. For in-plane field,
C2=A2 < 1, while for perpendicular field, C2=A2 > 1 due to
the orbital contribution to relaxation. For m 
 kBT , the
DOS is finite, and nothing distinguishes graphene from a
conventional metal because only one branch of the ‘‘V’’-
shaped dispersion is seen due to the smallness of T, therefore
the usual Korringa relation is satisfied. On the other hand, in
the opposite limit (m � kBT), the Korringa relation leads to
a constant, Fð0Þ times bigger than its conventional value,
signaling the nature of Dirac fermions. The crossover can be
explored even away from the DP by fixing the chemical
potential to a finite value, and sweeping the temperature.
Right at the DP, impurities spoil the crossover and re-
establish the Fermi-gas relation for ðkBT;mÞ � G.

The Korringa relation is shown in Fig. 4 in a magnetic
field, extrapolating between scenario (i) and (ii). For small
temperatures and broadening, the discrete Landau level
structure is visible in the DOS for small energies, thus
oscillatory behavior characterizes the Korringa relation.
When ðkBT ;GÞ > EL, the Landau levels are smeared and the
presence of magnetic field does not play an important role.
Fig. 5 summarizes our findings on the NMR properties. The
EQL shows up only at low temperatures and small chemical
potential, when the Landau level structure is visible. Larger
G favors the Fermi gas region.

5 Realization of NMR experiments on
graphene NMR is generally considered as one of the least
sensitive experimental tools albeit its tremendous utility. For
graphene, the expected low sensitivity stems from the low
abundance (1.1%) of the NMR active 13C nuclei in natural
.pss-b.com
carbon and its low gyromagnetic ratio, gð13
CÞ � gð1

HÞ=4.
NMR spectrometer performance is characterized by the limit
of detection (LOD) parameter, i.e., the number of nuclei in
the sample required to give a signal-to-noise ratio of three in
a single acquisition. State-of-the-art spectrometers [19] have
LOD0 ¼ 1012=

ffiffiffiffiffiffi
Hz

p
for 1H spins where the sample and

detector are at room temperature in a 14 T magnetic field
(nð1

HÞ ¼ 600 MHz). For a general case the LOD is [20]:
LOD ¼ LOD0

c

ffiffiffiffiffiffiffiffiffiffi
1 sec

T�
2

s
gð1

HÞ
g

 !3
Ts

300K
NFrel: (21)
Here c is the abundance of the given nucleus, T�
2 is the

apparent decay time of the NMR signal which contains the
spin–spin relaxation time, T2, and the magnetic field
inhomogeneity due to defects and the magnet. The NMR
� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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signal intensity follows the Curie temperature dependence of
the nuclear magnetization, that is described by the sample
temperature, Ts.NFrel is the receiver noise factor relative to a
receiver at 300 K.

Equation (21) gives that NMR would require a prohibi-
tively large graphene sheet unless (i) a high (nearly 100%) 13C
isotope enrichment, (ii) low (�1 K) sample temperature and
low detector noise factor are achieved. Isotope enriched
carbonaceous nanostructures such as fullerenes [21] and
carbon nanotubes [22] were reported and synthesis of highly
13C enriched graphene sheets with a sizeable area appears
feasible in particular with the vapor deposition method [23].
Low sample temperatures are customary in solid state NMR
and the cryo-probe NMR [24] reported a factor 8 decrease, i.e.,
NFrel ¼ 1=8 in the detector noise. We estimate that the
FWHM ¼ 1=pT�

2 is 50 ppm at 14 T of fully 13C enriched
graphene giving T�

2 ¼ 10ms. This is based on results of 13C
enriched fullerenes [25] and carbon nanotubes [22], provided
either a single graphene sheet or a set of graphene layers
oriented alike are present.

These factors give an LOD for 13C graphene of
LODgraphene ¼ 8 � 1012 which corresponds to a surface of
0:63 mm2. We think that synthesis of a fully 13C isotope
enriched graphene with such an area (not necessarily of a
single piece) is within reach. The above is a conservative
estimate and we expect that a dedicated NMR microcoil
setup, prepared by lithographic methods [19] would decrease
the LOD value and the required graphene sheet area.

6 Conclusions In summary, we generalized the cano-
nical theory of HFI between nucleus and conduction electrons
for the case of massless Dirac fermions. The orbital part of the
HFI differs from its usual form. The NMR measurables are
calculated as a function of the chemical potential, tempera-
ture, and the magnetic field and we identified the fingerprints
of the Dirac gas and EQL regions in the NMR parameters as
opposed to the usual Fermi liquid state. We argue that NMR
studies on graphene are within realistic reach.
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