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We study the electron spin resonance (ESR) intensity in the

Luttinger liquid phase of carbon nanotubes. The ESR

measurables such as the signal intensity and the line-width

are calculated in the framework of Luttinger liquid theory with

broken spin rotational symmetry as a function of magnetic field

and temperature. The linewidth is broadened significantly at
high temperatures, and the intensity is well describes by

Lorentzians. At very low temperatures, however, the ESR

lineshape becomes asymmetric around the resonance, and is

characterized by threshold behavior. These observables are of

special importance for the spintronics applications of carbon

nanotubes.
� 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
1 Introduction The effect of electron–electron inter-
action is an intensively investigated subject of condensed
matter physics. Low dimensionality tends to further enhance
the importance of correlation, driving the systems into
peculiar low temperatures phases. One-dimensional inter-
acting electrons usually form a strange metallic phase,
known as Luttinger liquid. In such a state of matter, the
fermionic quasiparticle picture breaks down, and the low
energy excitations are characterized by a set of bosonic
collective density modes (phonons) of the system, which are
the true elementary low-energy excitations. A rather faithful
realization of this phase is expected to occur in carbon
nanotubes, which is confirmed by both the theoretical [1–5]
and experimental [6–9] side. In general, low-dimensional
carbonaceous systems, fullerenes, carbon nanotubes, and
graphene exhibit a rich variety of such phenomena including
superconductivity in alkali doped fullerenes [10], quantized
transport in single-wall carbon nanotubes (SWCNTs), and
massless Dirac quasi-particles showing a half integer
quantum hall-effect in graphene even at room
temperature [11].
Due to the enhanced effect of correlations in low-
dimensional SWCNTs, the physical observables are
expected to deviate significantly from those in a conven-
tional Fermi liquid phase. The applicability of SWCNTs for
spintronics can only be decided after a careful analysis of
their spin relaxation properties. Extensive research in this
field is motivated by the orders of magnitude longer
conservation of the electron spin alignment in metals as
compared to their momentum conservation time [12]. An
ideal tool to study the spin relaxation properties of metals is
the electron spin resonance (ESR) technique. The spin
degeneracy of the energy levels is broken by the application
of magnetic field. In the presence of an additional small
transversal microwave magnetic field, resonant absorption is
induced between the split levels. By changing the value of
the longitudinal magnetic field, one determines the position
and broadening of the resonance, thus leading to the spin
lifetime (the inverse of the linewidth) and g-factor (the
position of the resonance). In three-dimensional metals,
the ESR signal intensity is proportional to the Pauli spin-
susceptibility, the ESR line-width and g-factor are
� 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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determined by the mixing of spin up and down states due to
spin-orbit (SO) coupling in the conduction band. These ESR
measurables are affected when correlations are present and
thus their study holds information about the nature of the
correlated state.

This motivated a decade long quest to find the ESR signal
of itinerant electrons in SWCNTs and to characterize
its properties in the framework of the expected
correlations [13–16]. However, to our knowledge no
conclusive evidence for this observation has been reported.
Let us summerize briefly the current experimental situation:
doped SWCNT does not belong to the Luttinger liquid (LL)
universality class, but rather forms a Fermi liquid. In this
case, the properties of the ESR signal is well documented
[14]. In undoped SWCNT, which forms an LL according to
photoemission spectroscopy [8, 9], the picture is less clear,
and the observation of various signals ranging from Pauli
through Curie to super-Curie explains the debate on the
inherent signal of LL. An often cited argument for this
anomalous absence of the ESR signal is the large
heterogeneity of the system, the lack of crystallinity, and
the presence of magnetic catalyst particles [13–16].
However, this would also prevent the observation of the
ESR signal of doped SWCNTs [14]. Thus the above
properties of SWCNTs should hinder the observation of
the ESR signal also for the Fermi liquid state, which is clearly
not the case. We suggest that the LL state inherently prohibits
the observation of ESR of the itinerant electrons, calling for a
realistic description of such experiments. A recent exper-
iment by Kuemmeth et al. [17] shed new light on the spin
degree of freedom of SWCNTs. It was shown that SO
coupling and correspondingly the lifting of the spin
rotational invariance is unexpectedly large. As we show
below, this results in a uniquely large homogeneous
broadening of the ESR line which explains the absence of
an intrinsic ESR signal of SWCNTs. Previous theories of
ESR in the SWCNTs concentrated on non-interacting spin
sector with SO coupled quasiparticles [18, 19].

One-dimensional interacting fermions usually form a
Luttinger liquid, which replaces the canonical Fermi liquid
picture in higher dimensions. The quasiparticle description
breaks down and low energy properties are described by
critical phenomena of collective modes for this state of
the matter due to restricted dimensionality and interactions
[20, 21]. This results in anomalous power-law dependence of
correlation functions at low energies, with critical exponents
changing continuously with the interaction strength. Another
hallmark of LL is spin-charge separation, spin and charge
excitations propagate with different velocities due to
the complicated many body ground state, caused by the
interactions.

Here, we study the ESR signal in an LL with broken spin
rotational symmetry. While at low temperatures the
characteristic non-integer power laws characterize the
response, the high temperature behavior crosses over to
the standard Lorentzians, whose width, in contrast to the
Fermi liquid picture [22], is determined by the LL
www.pss-b.com
parameters. We show that this explains the absence of
itinerant ESR in this system by combining DFT calculations
of the spin-susceptibility on metallic SWCNTs with a critical
evaluation of the experimental conditions.

To describe a metallic SWCNT, we apply an effective
low-energy theory. We neglect the ‘‘flavour’’ index coming
from the two K points [19] since we are interested in the spin
properties only. The standard LL Hamiltonian is expressed
as a sum of independent spin and charge excitations as
H ¼
X
n¼c;s

�hvn
2

Z
dx Kn P

2
n þ

1

Kn
@xfnð Þ2

� �
, (1)
where Kn are the LL parameters, n¼ c, s denotes the charge
and spin sector, respectively, Pn and fn are canonically
conjugate fields with velocity vn. The LL parameter in
the spin sector, Ks¼ 1 for SU(2) symmetric models as these
preserve the spin rotational symmetry. However, the
presence of SO and magnetic dipole–dipole interaction
between the conduction electrons [20, 23] produces spin
dependent interactions and breaks the spin rotational
symmetry, leading to Ks 6¼ 1. In addition, these processes
are also responsible for the g-factor anisotropy. The motion
of the electrons is restricted in the x direction.

The original fermionic field operators are expressed in
terms of the bosons as
Crs xð Þ ¼ hrsffiffiffiffiffiffiffiffiffi
2pa

p �

� exp i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

2
rfc xð Þ þ rsfs xð Þ þQc xð Þ þ sQs xð Þð Þ

r� �
;

(2)
which are needed to express the spin operators in the
bosonic language, hrs is the Klein factor, Qn xð Þ ¼
�
R x

�1 dx0Pn x0ð Þ, r¼R/L¼� denotes the chirality of the
electrons, and s¼� is the electron spin.

The ESR experiments are performed in a longitudinal
static magnetic field, B, applying a transversal perturbing
microwave radiation with a magnetic component, B?. For
the ESR description, the above Hamiltonian is completed
with the Zeeman term:
HZ ¼ �gmBB

Z
dx@xfs xð Þ: (3)
The ESR signal intensity is given by the absorbed
microwave power that is [22]:
I vð Þ ¼ B2
?v

2m0

x00
? q ¼ 0;vð ÞV , (4)
where m0 is the permeability of the vacuum, x00
? the

imaginary part of the retarded spin-susceptibility for the
transversal direction, and V is the sample volume. The spin
operators required to calculate x00

? are
S� xð Þ ¼
X
r;r0

exp i r0 � rð ÞkFð ÞCþ
r� xð ÞC r0� xð Þ: (5)
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Since ESR measures the q¼ 0 response, only the r ¼ r0

terms contribute, the others contain fast oscillating terms
� exp �2ikFð Þ and average to zero.

The Zeeman term in Abelian bosonization is the simplest
when the longitudinal magnetic field points in the spin
quantization axis (the z-axis). For a different field orien-
tation, the Zeeman term becomes more complicated but it
can be rotated along the z direction, at the expense of
changing the LL parameters Kn [23]. The external magnetic
field further lowers the SU(2) symmetry in addition to the SO
and dipole–dipole interactions, resulting in a further
renormalization of Ks.

From now on, we set �h ¼ kB ¼ gmB ¼ 1 and they will be
reinserted whenever necessary. The retarded spin-suscepti-
bility is built up from correlators of the type [24]
� 20
Sþ x; tð ÞS� 0; 0ð Þh i ¼ c2
?

pTa=vs
sin h pT x=vs � t þ iað Þ½ �

� �2þg

� pTa=vs
sin h pT x=vs þ t � iað Þ½ �

� �g

exp
ibx

vs

� �
,

(6)
where b¼KsB, c? is determined by the short distance
behavior and cannot be obtained by the methods used here.
Here we introduced the g ¼ Ks þ 1=Ks � 2ð Þ=2 parameter,
which encodes information about spin symmetry breaking
processes. Upon Fourier transformation, we obtain the
retarded spin-susceptibility. From a simple scaling analysis,
we can conjecture the behavior of the retarded spin-
susceptibility as
x q ¼ 0;vð Þ?� max B;v; T½ �2g , (7)
20
which is confirmed below.
Putting all this together, we find for the ESR intensity

(following Ref. [21], Appendix C):
12

14

16

18

rb
.u
ni
ts
)

K s = 1 .1

K s = 1 .2

K s = 1 .3
I vð Þ ¼ �A sin pgð Þv 2paT

vs

� �2g

� Im F 2 þ g; kþð ÞF g; k�ð ÞF 2 þ g; k�ð ÞF g; kþð Þ½ �,
(8)
10)
(a
where
6

8I (
B

K s = 1 .4

k� ¼ v� b

2pT
, (9)
4
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0

2

F x; yð Þ ¼ B

x� iy

2
; 1 � x

� �
, (10)
gµBB/ ω

Figure 1 (online colour at: www.pss-b.com) The ESR signal
intensity, Eq. (11) is shown at T¼ 0 as function of the magnetic
field for Ks¼ 1.1, 1.2, 1.3, and 1.4. The resonance occurs at
gmBB=�hv ¼ 1=Ks. The asymmetric intensity reflects the LL nature
of the ground state.
where B x; yð Þ ¼ G xð ÞG yð Þ=G xþ yð Þ is Euler’s beta func-
tion, G(x) is Euler’s gamma function, A is a constant, whose
value is determined further below. In the g ¼ 0 limit, SU(2)
spin symmetry is conserved by the Hamiltonian and the ESR
resonance becomes completely sharp, located at �B as
� B2d v� Bð Þ.
09 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
The influence of interactions is most clearly seen at
T¼ 0, when the ESR signal is completely asymmetric around
v ¼ �b, and cannot be approximated by Lorentzians:
I vð Þ ¼ A
a

2vs

� �2g

sin2 pgð ÞG
2 1 � gð Þ
g 1 þ gð Þ

�
2 vj j v2 þ b2

� �
v2 � b2ð Þ1�g

, (11)
for jvj > b, and zero otherwise. The ESR intensity vanishes
below a threshold set by the magnetic field, and falls off in a
power law fashion, depending on the explicit value of Ks,
and is shown in Fig. 1.

However, the sharp threshold disappears with increasing
temperature and the spectrum broadens. In the limit of
T � v, B and g � 1, which is relevant for realistic
experiments, the intensity can be approximated by (upon
reinserting original units)
I vð Þ ¼ A2p �hvð Þ2

� h

�hv� KsgmBBð Þ2þh2
þ h

�hvþ KsgmBBð Þ2þh2

" #
,

(12)
where
h ¼ 2gpkBT : (13)
This expression works well outside of its range of
validity and it consists of two Lorentzians, centered around
�KsgmBB, characterized by a width of h. Hence, the
interaction (g) together with the temperature determines
www.pss-b.com



Phys. Status Solidi B 246, No. 11–12 (2009) 2747

Original

Paper

0 0.5 1 1.5 2
0

10

20

30

40

50

60

70

80

90

100

gµBB/ ω

I(
B
)
(a
rb
.u
ni
ts
)

K s = 1 .1

Figure 2 (online colour at: www.pss-b.com) The ESR signal
intensity, Eq. (8) is shown as a function of the magnetic field for
Ks¼ 1.1 (corresponding to g ¼ 0.0045), kBT=�hv ¼ 0:1 (blue), 1
(red), 5 (black), and 25 (magenta). The resonance occurs at
gmBB=�hv ¼ 1=Ks 	 0:91 for small temperatures.
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Figure 4 (online colour at: www.pss-b.com) The resonance peak
in the ESR signal intensity is shown as a function of temperature
for for Ks¼ 1.1, 1.2, 1.3, and 1.4. The resonance occurs at
gmBB=�hv ¼ 1=Ks.
the width of the resonance and shifts the resonance center as
well, as is seen in Figs. 2 and 3 for Ks¼ 1.1 and 1.3,
respectively. In Fig. 4, the evolution of the resonance peak
with temperature is shown for various Ks.

This expression allows us to make contact with the
conventional Fermi liquid case. In that case,Ks¼ 1 (together
with g ! 0), which signals a non-interacting spin sector.
The ESR intensity reduces to
I
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Thus the integrated ESR intensity reads asR
dvI vð Þ=v ¼ A4p2gmBB. In a Fermi liquid, this is

expressed in terms of the static spin-susceptibility [22], x0,
as

R
dvI vð Þ=v ¼ x0B

2
?VpgmBB

�
2m0�h. This fixes the so far

unknown numerical prefactor as A ¼ x0B
2
?V

�
2m0�hp. In

summary, the ESR signal of an LL with broken spin
rotational symmetry (i) is significantly broadened due to
the interaction and spin symmetry breaking and (ii) has a
signal intensity which matches that of the non-interacting
state.

These results are similar to those found for the 1D
antiferromagnetic Heisenberg model [25], whose low energy
theory is identical to the spin sector of a Luttinger liquid,
Eq. (1). The ESR line-width also scales with T at low
temperatures. However, the spin in the Heisenberg model,
when represented in terms of fermionic variables via the
Jordan–Wigner transformation, usually contains non-local
string operators [21] and acquires a different scaling
dimension than the spin of itinerant electrons. The exchange
anisotropy, causing the broadening of the ESR signal, shares
common origin with the g-factor anisotropy in terms of SO
coupling, scaling with (Dg/g)2.

In Refs. [18, 19], a non-interacting spin sector was
considered (withKs¼ 1) together with explicitly SO coupled
quasiparticles, leading to a narrow two peak spectrum. Our
approach takes general spin anisotropies due to SO coupling,
spin backscattering, dipole-dipole interactions and magnetic
field into account in our starting Hamiltonian [Eq. (1)]. These
processes introduce interactions in the spin sector [23],
resulting in Ks 6¼ 1.

The SO coupling in SWCNTs was found to be
unexpectedly large, around 1 meV for a nanotube with
diameter of 1 nm, resulting in a g-factor enhancement
� 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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g¼ 2.14 in a few electron carbon nanotube quantum dot [17].
According to our theory, the position of the resonance occurs
at Ksg with the bare g-factor, which leads us to Ks� 1.07. In
addition,Ks� 1.3 for quantum wires [26] like InAs, which is
another possible realization of LL. These materials possess a
SO coupling of the same order of magnitude than SWCNTs
but they have a three times smaller Fermi velocity. Following
a similar line of reasoning for SWCNTs, we use [21]
Ks 	 1 þ gs= 2pvFð Þ with gs the effective interaction in the
spin sector using the g-ology notations [19, 21], influenced
by the SO coupling (the same as for quantum wires [26], but
with vF 	 3vF;wire). Based on all this, we take a conservative
estimate of Ks to be around 1.1.

In the following, we discuss the relevance of the results
on the absence of an ESR signal in SWCNTs. As we showed
above, the ESR signal intensity of an LL crosses over
smoothly for the non-correlated case to the static suscepti-
bility that is the Pauli susceptibility of metallic SWCNTs
[27]: x0 ¼ m0g

2m2
BD EFð Þ=4, where D eFð Þ is the density of

states (DOS) at the Fermi energy. To have an accurate value
for the DOS in a realistic sample, we performed density
functional theory calculations with the Vienna ab initio
Simulation Package [28] within the local density approxi-
mation for metallic nanotubes. The projector augmented-
wave method was used with a plane-wave cutoff energy of
400 eV. The DOS was obtained with a Green’s function
approach from the band structure. We considered the
SWCNTs with chiral indices (9,9), (15,6), (10,10), (18,0),
and (11,11) [29]. These tubes are within the Gaussian
diameter distribution of a usual SWCNT sample with a mean
diameter of 1.4 nm and a variance of 0.1 nm. We confirmed
by nearest-neighbor tight binding calculations on all the
metallic SWCNTs in the above diameter distribution that
the DOS depends very weakly on the chirality, thus the above
SWCNTs chiralities are indeed representative for the
ensemble of the metallic tubes.

We obtain that such a tube ensemble has a DOS of
D EFð Þ ¼ 4:6 � 10�3 states/eV/atom by averaging the DOS
for the above SWCNTs and taking into account that only one
third of the tubes are metallic for this diameter range [29].
This is a very low DOS which results from the one-
dimensionality of the tubes and from the fact that the
majority of the tubes are non-metallic. It is 50 times smaller
than in K3C60 [D(EF)	 0.3 states/eV/atom [10]] and is
comparable to the low DOS of pristine graphite [D EFð Þ 	
5 � 10�3 states/eV/atom [30]]. With the above DOS, we
obtain that a typical 2 mg SWCNT sample gives a practically
detectable signal-to-noise ratio of S/N¼ 10 for a spectrum
measured for 1000 s provided the ESR line is not broader
than 110 mT. To obtain this value, we considered that the
state-of-the-art ESR spectrometers give an S/N¼ 1 for 1010

S¼ 1/2 spins at 300 K provided the ESR line-width is 0.1 mT
and each spectra points (typically 1000) are measured for 1 s.
We also took into account that the S/N drops with the square
of the line-width for broadening beyond 1 mT.

The above calculated homogeneous broadening of the
ESR line of an LL is 2pgkBT=gmB in units of the magnetic
� 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
field. Thus at 4 K, which is the lowest available temperature
for most ESR spectrometers, one has a broadening of g
18.7 Tesla. This, together with the above detectability
criterion gives an upper limit of g ¼ 6 � 10�3 for the
detection of the ESR signal. Clearly, the above conservative
estimate of g ¼ 4:5 � 10�3 based on the Ks¼ 1.1 value is
close to this limit, which explains why careful studies have
not yet yielded a conclusive ESR signal of itinerant electrons
is SWCNTs. This argument might also be turned around: the
fact that no ESR signal of the itinerant electron has been
observed in the SWCNTs means that the line is broadened
beyond observability, which is translated to g > 6 � 10�3,
putting also Ks> 1.1. However, other factors, such as, e.g.,
limited microwave penetration into the SWCNT sample
further limits ESR experiments, leading to the unobserva-
bility of ESR for smaller values of g and Ks as well.

We finally comment on the future viability of this
observation. Clearly, ESR spectrometers operating to sub
Kelvin temperatures are required. Observation of linearly
temperature dependent ESR line-width would be an
unambiguous evidence for the observation of the ESR signal
of itinerant electrons in the LL state. Such a temperature
dependence is fairly unusual as ESR line-width in metals
normally tends to a residual value similar to the resistivity.

In summary, we extended the theory of ESR in an LL for
the case of broken spin-symmetry with interacting spin sector.
We obtain a significant homogeneous broadening of the ESR
line-width with increasing temperature, which explains the
unobservability of ESR in SWCNTs and puts severe
constraints on the usability of SWCNTs for spintronics.
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