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A theory of nuclear magnetic resonance (NMR) in graphene is presented. The canonical form of the

electron-nucleus hyperfine interaction is strongly modified by the linear electronic dispersion. The NMR

shift and spin-lattice relaxation time are calculated as a function of temperature, chemical potential, and

magnetic field, and three distinct regimes are identified: Fermi-, Dirac-gas, and extreme quantum limit

behaviors. A critical spectrometer assessment shows that NMR is within reach for fully 13C enriched

graphene of reasonable size.
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Nuclear magnetic resonance (NMR) is a powerful spec-
troscopic tool [1] and an architecture for quantum infor-
mation processing [2,3]. Both of these applications are
possible due to the weak interaction of the nucleus with
its environment. This interaction is sufficient to probe the
electronic state of its vicinity, which yields information
about the local electron bonds or about the correlated
behavior of electrons as, e.g., in superconductors [4].
NMR quantum computing exploits that nuclei are well
isolated from the environment; thus, there is a longer
time window for the manipulation of the nuclear state.

For both kinds of applications, the important NMR
parameters are the shift of the NMR resonance with respect
to a standard and the decay of the longitudinal magnetiza-
tion to its equilibrium value, the spin-lattice relaxation
time T1. These were extensively studied in solid state
systems both theoretically and experimentally [1,5].
However, the body of NMR experiments was focused on
three-dimensional systems which stemmed from the un-
availability of stable, inherently two-dimensional materi-
als. The discovery of graphene, a single stable sheet of
carbon atoms in a hexagonal lattice [6], enables studies of
an exactly two-dimensional system. Its quasiparticles fol-
low a linear band dispersion, causing the electrons to
behave as massless Dirac fermions, which gives rise to
unique transport and magnetic properties [7].

In a metal, the NMR measurables are most affected by
the surrounding electrons through the electron-nuclear hy-
perfine interaction (HFI). The standard, textbook form of
the HFI of nuclei and conduction electrons leads to the
Hamiltonian HHFI ¼ Horb þHspin [5]:

Horb ¼ �0

4�
g��

B�nI
r� p

r3
;

Hspin ¼ �0

4�
g�B@�nI

�
Sr2 � 3rðSrÞ

r5
� 8�

3
S�ðrÞ

�
:

(1)

Horb is due to the electron orbital magnetism, and Hspin

contains the electron spin-dipole and the Fermi-contact

interactions. �0 is the permeability of free space, �n is
the nuclear gyromagnetic ratio, I is the nuclear spin, and
g � 2 is the g factor of the electrons. S, p, and r are the
electron spin, momentum, and vector operators, respec-
tively.�B is the Bohr magneton, and��

B ¼ �Bm=m� is the
effective orbital Bohr magneton [8], where m� is the ef-
fective mass and m is the mass of a free electron.
It is not obvious how to generalize the orbital term of the

HFI to massless Dirac fermions. Second, the unique prop-
erties of the conduction electrons of graphene are expected
to give rise to a unique NMR behavior. For example,
deviation from the Korringa relation [1], that is an impor-
tant benchmark of non-Fermi liquids, is expected.
Here we show that the canonical description of the

hyperfine interaction is modified for the massless Dirac
fermions, and we derive the corresponding hyperfine
Hamiltonian. We identify different regimes based on the
NMR measurables: Fermi-, Dirac-gas, and extreme quan-
tum limit behaviors. We discuss the feasibility of NMR on
graphene with a critical assessment of spectrometer
performance.
The low energy excitations in graphene are described by

the two-dimensional Dirac equation [7]:

H ¼ vFð�xpx þ �ypyÞ; (2)

where vF � 106 m=s is the Fermi velocity of graphene,
and the pseudospin variables (Pauli matrices �) spring
from the two-sublattice structure. The HFI in graphene is
derived following Abragam [5] by treating the nucleus as a
magnetic dipole with m ¼ @�nI. Its vector potential
AðrÞ ¼ �0

4�
m�r
r3

is inserted into the kinetic momentum as

p ! pþ eA in addition to the electron and nuclear
Zeeman terms. This calculation gives the effective HFI

Hgr
HFI ¼

�0

4�
@�nIz

�
r� j

r3

�
z
þHspin; (3)

where j ¼ evF� is the electric current operator in gra-
phene and� is a vector of the Pauli matrices. The first term
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describes the interaction of the nucleus with the orbital
motion of the Dirac electrons [9], which contains Iz only as
the electrons are confined in the plane. Hspin is unchanged

with respect to its usual form.
The orbital term in Eq. (3) differs significantly from the

usual form in Eq. (1) as the orbital magnetic moment (r�
j) replaces the usual term (

g��
B

@
r� p). This is the result of

the peculiar form of the current operator for Dirac electrons
j� �, which is also responsible for the jittery motion of
the center of mass coordinate known as Zitterbewegung
[10]. Equation (1) can be deduced formally from Eq. (3) by
using j ¼ ep=m� for a normal metal.

A unique property of the orbital magnetic moment of
graphene is that it remains invariant in an applied magnetic
or gauge field, since j is insensitive to the vector potential.
We mention that the proper orbital angular momentum of
Dirac particles is still r� p in the sense that it is respon-
sible for rotations in the x-y plane, which differs from the
orbital magnetization. We also note that there are no higher
order terms in the vector potential in the graphene HFI
Hamiltonian due to the linearity of the Dirac equation.

The second quantized form of the orbital part of the
interaction in graphene is obtained as

Hgr
orb ¼

Jorb
N

Iz
X

kk0��0s
fðk;k0; �; �0Þcþk�sck0�0s; (4)

where Jorb ¼ �0@�nevF=2Ac, fðk;k0; �; �0Þ ¼
f��0 � exp½ið’k � ’k0 Þ�gð�kþ �0k0Þ=2jk� k0j, cþk�s
creates a quasiparticle with energy E�ðkÞ and real spin s,
’k is the angle of kwith the kx axis, Ac is the unit cell area,
and N is the number of unit cells. The interaction is
bounded as jfðk;k0; �; �0Þj � 1. The magnitude of the
orbital term is estimated as Jorb � 21 MHz using
�ð13CÞ=2� ¼ 10:7 MHz=T.

The effective HFI is obtained from Eq. (3) as

Hgr
HFI ¼ S �AIþHgr

orb; (5)

where �A is a 3� 3 tensor with diagonal elements. Of these,
the traceless ones are due to the spin-dipole interaction as
Adipðx; yÞ:AdipðzÞ ¼ �Adip:2Adip, and the scalar term Aiso is

given by the isotropic Fermi-contact interaction. First-
principles calculations [11] gave Adip ¼ 73 MHz and

Aiso ¼ �44 MHz, which gives ð�117;�117; 102Þ MHz
for the diagonal elements of �A. The first-principles value
of Adip agrees well with the Adip ¼ 91 MHz obtained for

the pz orbital of a free carbon atom [12], which confirms
that it is the relevant orbital.

Upon establishing the hyperfine interaction in graphene,
we turn to the calculation of the NMR measurables. For a
given magnetic field, terms of Eq. (5) perpendicular and
parallel to the field contribute to relaxation and to the
Knight shift, respectively [5,13]. The spin-lattice relaxa-
tion rate 1=T1 and the Knight shift K for a given magnetic
field direction (i ¼ x; y; z) are [14]

�
1

T1T

�
i
¼ C2

i �kB
@

Z 1

�1
�ðE2ÞdE

4kBTcosh
2½ðE��Þ=2kBT�

; (6a)

Ki ¼ Ai�e

2�n

Z 1

�1
�ðEÞdE

4kBTcosh
2½ðE��Þ=2kBT�

; (6b)

where C2
i ¼

P
��iðA2

�=2þ ��;z2J
2
orbÞ, �e is the gyromag-

netic ratio of electrons, �ðEÞ is the density of states (DOS),
and� is the chemical potential. Angular-dependent T1 and
K are obtained by standard formulas [13].
The orbital interaction involves only Iz; thus, it affects

T1 only when the field is in the graphene plane (i ¼ x; y),
which explains the 2J2orb term (the 2 comes from spin

degeneracy). The orbital term does not contribute to K
even for a magnetic field along z in a manner analogous
to demagnetization. The relaxation time for a perpendicu-
lar field due to spin-spin interaction (without the orbital
term) would be 15% shorter than for in-plane fields.
However, the orbital interaction shortens the relaxation
time for an in-plane field, which results in an almost
isotropic T1. More accurate statements require the first-
principles calculation [11] of Jorb. The Knight shift
changes sign and drops by 15% from in-plane to out-of-
plane fields. We omit the i index from Ci in the following.
We discuss two scenarios for the DOS in the following:

(i) absence of Landau levels and (ii) where presence of
Landau levels is important. Scenario (i) occurs for three
cases: when the magnetic field is in the plane, when the
magnetic field is arbitrary but level broadening due to � or
T makes the Landau levels indistinguishable around� [the
criterion is v2

FeB� � maxð�; kBTÞ], or near the Dirac
point (DP) (small �) when the lowest Landau level is

broadened due � or T [the criterion is vF

ffiffiffiffiffiffiffiffiffiffiffi
2eB@

p �
maxð�; kBTÞ].
The magnetic field-free DOS is used in scenario (i):

�ðEÞ ¼ AcjEj
2�@2v2

F

(7)

per spin and C atom. The resulting relaxation rate is�
1

T1T

�
¼ C2 �kB

@

�
�2ð�Þ þ �2

�
�kBTffiffiffi

3
p

��
; (8)

which goes as max½�2; ð�kBTÞ2=3�. T is important only
near the DP; otherwise, � dominates.
Exactly at the DP, T1 diverges as T1 � T�3; therefore,

the nuclear spins are not relaxed by conduction electrons at
T ¼ 0 due to the absence of charge carriers. In the presence
of impurities, the DOS at the DP reads as [15]

�ð0Þ ¼ Ac

2�@2v2
F

2�

�
ln

�
D

�

�
; (9)

with � the scattering rate andD the cutoff in the continuum
theory. Therefore, the aforementioned divergence of the
clean system weakens to T1 � ½�2ln2ðD=�ÞT��1, repro-
ducing the Fermi-gas behavior.
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The Knight shift is evaluated as

K ¼ A
�e

2�n

�

�
2kBT ln

�
2 cosh

�
�

2kBT

���
: (10)

It can be approximated by K �maxð2kBT ln2; j�jÞ. For
undoped graphene at T ¼ 300 K, this gives jKj �
0:4 ppm, which compares well with the predicted values
<2 ppm on single-wall metallic nanotubes [16]. Impurities
provide a finite DOS even at the DP; therefore, the Knight
shift stays finite there as K � � lnðD=�Þ.

Concluding scenario (i), we give 1=T1T for the case of
chemical doping of or chemisorption on the graphene
layer. For an ACx composition, where A is an alkali atom
with full charge transfer, there is an extra 2=xAc electron
density to each lattice site. This translates to a chemical

potential shift of � ¼ @vF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�=xAc

p
, which leads to T1 �

500 sK� ðx=TÞ. This gives T1 � 10 s at 300 K for x ¼ 8,
which is a usual doping level for graphite [17]. The Knight
shift is jKj � 80=

ffiffiffi
x

p
ppm, giving jKj � 28 ppm for x ¼

8, similar to that in intercalated graphite [17] (K ¼ 90 ppm
forKC8). It shows the sensitivity of the NMR properties for
doping, which may lead to a sensor application of gra-
phene. The chemical potential can be also tuned by gate
voltage with a less dramatic effect on T1.

For scenario (ii), Landau level formation is important,
and the continuous spectrum is replaced by discrete
Landau levels as En� ¼ �EL

ffiffiffi
n

p
, where � ¼ �, n is a

non-negative integer, EL ¼ vF

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2@eBz

p
is the Landau scale,

and Bz is the perpendicular component of the magnetic
field. With this, the DOS reads as [15]

�ðEÞ ¼ Ac

2�@2v2
F

1

2�

�
�E2

L

E2 þ �2
� 4� ln

�
EL

D

�

� 2 Im

�
ðEþ i�Þ�

�
1� ðE� i�Þ2

E2
L

���
; (11)

where �ðxÞ is Euler’s digamma function, and reduces to
Eq. (7) for clean systems with a vanishing magnetic field.
The 1=T1T and the Knight shift are shown in Fig. 1 sepa-
rately as a function of the chemical potential. These display
the characteristic de Haas–van Alphen-like oscillatory be-
havior at high magnetic field and low� and T that we refer
to as the extreme quantum limit (EQL).

Calculation of the relaxation rate and Knight shift allows
one to test the validity of the Korringa relation, i.e.,
whether 1=T1TK

2 ¼ const holds. In general, the
Korringa relation is valid for a Fermi liquid. In particular,
for a noninteracting Fermi gas [18] ð1=T1TK

2ÞF ¼
4�kBð�n=�eÞ2=@. For graphene within scenario (i) and in
the limit of ð�; kBTÞ 	 �, which is referred to as the
scaling limit, it reads as

1

T1TK
2 ¼ 4�kB

@

�
�n

�e

�
2
�
C2

A2

�
F

�
�

kBT

�
; (12)

which depends only on the ratio of � and T, and FðxÞ is a
universal scaling function

FðxÞ ¼ 3x2 þ �2

12ln2½2 coshðx=2Þ� ; (13)

which is even in x, satisfies Fð0Þ ¼ �2=3ln2ð4Þ � 1:71 and
Fð1Þ ¼ 1, and is shown in Fig. 2. For an in-plane field
C2=A2 < 1, while for a perpendicular field C2=A2 > 1. For
� 	 kBT, the DOS is finite, and nothing distinguishes
graphene from a conventional metal as only one branch
of the ‘‘V’’-shaped dispersion is seen at low T; therefore,
the usual Korringa relation is satisfied. In the opposite limit
(� 
 kBT), the Korringa relation leads to a constant Fð0Þ
times bigger than its conventional value, which signals the
nature of Dirac fermions. The crossover can be explored
even away from the DP by fixing the chemical potential to
a finite value and sweeping the temperature. Right at the
DP, impurities spoil the crossover and reestablish the
Fermi-gas relation for ðkBT;�Þ 
 �.
The Korringa relation can be numerically evaluated in

the presence of Landau levels [i.e., for scenario (ii)] using
Eq. (11), and Fig. 2 shows the result. For small T and �, the
oscillatory behavior due to Landau levels characterizes the
Korringa relation. When ðkBT;�Þ> EL, the Landau levels
are smeared and the magnetic field does not play a role, and
the scaling limit is restored.
In Fig. 3, we summarize the NMR properties in the form

of a ‘‘phase diagram.’’ The extreme quantum limit shows
up only at low temperatures and a small chemical potential,
when the Landau level structure is visible. Larger �, i.e.,
the presence of defects, favors the Fermi-gas region.
We finally comment on the feasibility of NMR experi-

ments in graphene. NMR has a low signal sensitivity albeit
its tremendous utility, and the NMR active 13C nuclei has a
low abundance (c ¼ 1:1%) and a low gyromagnetic ratio
�ð13CÞ � �ð1HÞ=4. NMR spectrometers are characterized
by the limit of detection (LOD) parameter, i.e., the number
of nuclei required for a signal-to-noise ratio of three in a
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FIG. 1 (color online). The nuclear spin relaxation rate (main
figure) and the Knight shift (inset) are shown with � ¼ 0:1EL

and D ¼ 1000EL as a function of the chemical potential. The
solid blue (dashed red) line refers to the presence (absence) of a
magnetic field at T ¼ 0, and the black dashed-dotted line cor-
responds to kBT ¼ EL in the presence of a magnetic field.
Increasing � or T makes the Landau level structure disappear.
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single acquisition. State-of-the-art spectrometers [20] have

LOD0 ¼ 1012=
ffiffiffiffiffiffi
Hz

p
for 1H spins with the sample and

detector at 300 K in a 14 T magnetic field [�ð1HÞ ¼
600 MHz]. For a general case the LOD is [21]

LOD ¼ LOD0

c

ffiffiffiffiffiffiffiffiffiffiffiffi
1 sec

T�
2

s �
�ð1HÞ
�

�
3 Ts

300 K
NFrel: (14)

Here T�
2 is the decay time of the NMR time-domain signal

which contains the spin-spin relaxation time T2 and the
magnetic field inhomogeneity due to defects and the mag-
net. The Curie T dependence of the NMR signal is de-
scribed by the sample temperature Ts. NFrel is the receiver
noise factor relative to a receiver at 300 K.

Clearly, low sample temperature, low detector noise, and
highly 13C enriched graphene are required for an NMR
study. Ts of 1 K is customary in solid state NMR, and
NFrel ¼ 1=8 was reported for cryo-probe NMR [22]. We
estimate from NMR data on graphitic carbon [17,23] that
the FWHM ¼ 1=�T�

2 is 50 ppm at 14 T of fully 13C
enriched graphene giving T�

2 ¼ 10 �s. This includes a
weakly anisotropic T2 due to the nuclear spin-spin inter-

action, which amounts to 24 (28) ppm according to the
Van Vleck formula [1], for a magnetic field perpendicular
(parallel) to the graphene plane. These factors give an LOD
for 13C graphene of 8� 1012 which corresponds to a
surface of 0:63 mm2. Synthesis of 13C graphene with
such an area (not necessarily of a single piece) is within
reach as 13C enriched graphite was synthesized [23]. We
expect that a dedicated NMR microcoil setup prepared by
lithographic methods [20] would further decrease the LOD
value and the required graphene sheet area.
In summary, we generalized the canonical theory of

hyperfine interaction between the nucleus and conduction
electrons for graphene. The orbital part of the HFI differs
from its usual form as it does not involve the angular
momentum. We identified three distinct regimes in gra-
phene based on the NMR measurables: Fermi- and Dirac-
gas phases and the extreme quantum limit. We argue that
NMR on graphene is within realistic reach.
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FIG. 3 (color online). Schematic phase diagram of graphene
according to NMR. The boundaries (solid curves) denote smooth
crossovers and move to the dashed ones for increasing disorder.
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FIG. 2 (color online). The Korringa relation, normalized to its
Fermi-gas value, as a function of �=kBT (left panel) and �=EL

(right panel). The usual Korringa relation is recovered for � 	
kBT, but for increasing T the normalized Korringa relation
increases and saturates to �2=3ln2ð4Þ. The right panel shows
the Korringa relation for � ¼ 0:1EL, which allows the visibility
of the lowest Landau levels. The temperature is varied as
kBT=EL ¼ 0:05, 0.1, 1, and 20 from bottom to top. For kBT �
�, separate peaks indicate the Landau level structure, and the
curves cross over to the field-free scaling limit with increasing T.
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