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We analyze a recent NMR experiments by Singer et al.
[Singer et al. Phys. Rev. Lett. 95, 236403 (2005).], which
showed a deviation from Fermi-liquid behavior in carbon
nanotubes with an energy gap evident at low tempera-
tures. A comprehensive theory for the magnetic field and
temperature dependent NMR 13C spin-lattice relaxation
is given in the framework of the Luther-Emery and Lut-
tinger liquids.

The low temperature properties are governed by a
gapped relaxation due to a spin gap (∼ 30 K), described
by the Luther-Emery liquid picture, which crosses over
smoothly to the Luttinger liquid behaviour with increas-
ing temperature.

1 Introduction Low dimensional carbonaceous sys-
tems, fullerenes, carbon nanotubes (CNTs), and graphene
display a rich variety of exotic states and strongly corre-
lated phenomena. These include superconductivity in al-
kali doped fullerenes [1], quantized transport in single-wall
carbon nanotubes (SWCNTs), and massless Dirac quasi-
particles showing a halve integer quantum Hall-effect in
graphene even at room temperature. A compelling corre-
lated state of one-dimensional systems is the Tomonaga-
Luttinger liquid (TLL) state. The TLL state has been sug-
gested to describe the low energy properties of CNTs with
a single shell, the single-wall carbon nanotubes [2–6].
Transport [7] and photoemission studies [8, 9] provided
evidence for the existence of the TLL state in SWCNTs. In
these studies, power-law behavior of temperature and bias
dependent conductivity and a power-law Fermi edge was
observed, respectively.

Nuclear magnetic resonance (NMR) is a powerful met-
hod to characterize correlated states of materials as it is
sensitive to the density of states near the Fermi edge. For a

material with a Fermi-liquid state, the temperature depen-
dent spin-lattice relaxation time, T1 follows the so-called
Korringa temperature dependence for which 1/T1T is con-
stant. Recently, 13C enriched SWCNTs were grown inside
carbon nanotubes from 13C enriched fullerenes [10]. This
allowed a high precision measurement of T1 in small diam-
eter SWCNTs by Singer et al. [11]. A tentative fit of the ex-
periments with a gapped Fermi liquid type density of states
(DOS) indicated overall agreement but obvious discrepan-
cies in detail. When the magnetic field and temperature de-
pendent data for T1 were fitted with this phenomenological
model a gap at the Fermi surface with 2∆ � 40 K opened
already above room temperature, i.e. its Tc is larger than
300 K. This strongly violates the 2∆/kBT > 3.52 relation,
thus simple mean field theories are not applicable [12].
Also, the phenomenological description can not account
for the strong overshoot of 1/T1T when T approaches the
gap.

Here, we analyze the NMR results in the framework
of the Luttinger liquid and Luther-Emery liquid pictures
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(interacting one-dimensional electrons without and with a
gap, respectively). At high temperatures, the former domi-
nates, while the latter accounts for the dominance of a spin
gap at low temperatures. We show that the temperature and
magnetic field dependent T1 of 13C can be explained in the
TLL scenario with a small spin gap of the order of 30 K.

The most striking difference between Fermi and Lut-
tinger liquids is the anomalous power-law dependence of
correlation functions at low energies in the latter (including
the NMR relaxation rate), with critical exponents chang-
ing continuously with the interaction strength. This is to be
contrasted to a Fermi liquid, where the quasi particle pic-
ture (electron) holds, implying critical exponents fixed to
an integer. In a Luttinger liquid, low energy properties are
described by critical phenomena of collective modes.

In the following, we construct the low energy theory
for CNT with the use of bosonization. We determine the
various contributions to the NMR relaxation rate at high
and low temperatures, and fit the obtained formula to the
experimental results.

2 Bosonization of SWNT The Hamiltonian de-
scribing the kinetic energy of electrons on SWNT is given
by [2–6]

Hkin = −iv

∫
dx

∑
rασ

rΨ+
rασ(x)∂xΨrασ(x), (1)

where only two transport bands (α = ±) are taken into
account, and for each band, there is a right and left moving
branch (r = ±) with linear dispersion, σ stands for the
spin.

r=+ r=− r=+ r=−

k

E(k)

α=− α=+

kF

qF

Figure 1 (online colour at: www.pss-b.com) The schematic band
structure of a metallic nanotube is shown.

The forward scattering interaction reads as

HFS =
1
2

∫
dxdyρ(x)V (x − y)ρ(y), (2)

where ρ(x) =
∑

rασ Ψ+
rασ(x)Ψrασ(x), V (x) is the

Coulomb potential. For the moment, we neglect the umk-
lapp and backward scattering processes. The Hamiltonian
is bosonized via

Ψrασ(x) =
ηrασ√
2πa

exp [i(qF r + kF α)x + i(rθασ + φασ)] ,

(3)

where kF denotes the undoped Fermi surface of a graphene
layer, qF determines the band filling [2] and |qF | � kF

to ensure the applicability of the low energy continuum
approximation. ηrασ’s are Majorana fermions, standing
for the proper anticommutation relations between differ-
ent branches. The phase fields are expressed by the sym-
metric and antisymmetric charge and spin modes (δ = ±)
between the valleys of the charge and spin excitations
(j = c, s) as 2θασ = θc+ + σθs+ + αθc− + ασθs− and
2φασ = φc+ + σφs+ + αφc− + ασφs−. This leads to the
Hamiltonian

H0 = Hkin + HFS =

=
∑
j,δ

vjδ

2π

∫
dx

[
K−1

jδ (∂xθjδ)2 + Kjδ(∂xφjδ)2
]
, (4)

vjδ = vF /Kjδ . For long range Coulomb interaction,
Kc+ ≤ 1 and is usually around 0.2, while for the
other modes, Kjδ ≥ 1, but only slightly greater than
unity [2, 8, 9, 13].

Other interaction terms such as umklapp and backscat-
tering have exhaustively been studied in Refs. [2,5,6], and
we refrain from their analysis here. These parallel closely
to the investigation of coupled Luttinger liquid chains.
Their effect can be summarized as follows: at half filling,
umklapp scattering generates a finite charge (Mott) gap in
both the symmetric and antisymmetric charge sector, while
spin backscattering leads to the opening of a spin gap in
the spin sectors [3–5]. This is analogous to the spin ladder
magnon excitations [14] found in the strong antiferromag-
netic coupling limit. Thus, the ground state at half filling
is a Mott insulator with all excitations gapped [15]. Away
from half filling, the c+ sector is gapless as discussed be-
fore, while all other sectors remain massive. This means,
that at low temperatures (T � ∆), exponentially activated
behaviour is expected [3, 4], while in the high temperature
regime (T � ∆), the usual Luttinger liquid behaviour is
restored. Since the strength of backward and umklapp in-
teractions is inversely proportional to the diameter of the
tube, these become important (and generate a gap) only for
narrow tubes [2, 3, 13], such as the one in Refs. [10, 11]
with an inner tube diameter of 0.7 nm.

The above statements apply mainly to long-range Co-
ulomb interactions [2, 3, 5], which assumes isolated nan-
otubes. For arrays (ropes), screening becomes important,
and Hubbard-like models with short range potentials are
invoked [4, 6]. Nevertheless, the previous results, includ-
ing the presence of a spin gap, hold in this case as well.

3 NMR relaxation rate We start our analysis in the
high temperature region to characterize the TLL behaviour
first. Hence, we postpone the discussion of the gaps for the
moment, and concentrate on the temperature exponents in
the NMR relaxation rate, 1/T1. In general, 1/T1 measures
the local dynamics of the spins, and it is related to the trans-
verse spin susceptibility, which in the case of nanotubes,
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reads as

χ⊥(iωn) = −
β∫

0

dτeiωnτ 〈TτS+(x = 0, τ)S−(x = 0, 0)〉,

(5)

where S±(x) =
∑

rαr′α′ Ψ+
rα±(x)Ψr′α′∓(x). From this,

after analytic continuation to real frequencies, the NMR
relaxation time is

(T1T )−1 ∼ lim
ω→0

Imχ⊥(ω)
ω

. (6)

In general, there are four different length scales [2] in
S±(x), and the corresponding wavevectors are 1. q1 = 0,
2. q2 = 2kF , 3. q3 = 2qF and 4. q4 = 2(kF ± qF ). These
show up in the term to S±(x) at 1. α = α′, r = r′, 2.
α = −α′, r = r′, 3. α = α′, r = −r′ and 4. α = −α′,
r = −r′, respectively.

In all cases, the corresponding contribution to the sus-
ceptibility decays at long times as ∼ 1/tγi/2 with the ex-
ponents listed in Table 1. Based on Ref. [2], these can
be approximated by γ1 ≈ γ2 ≈ 2 + 1/Ks + Ks and
γ3 ≈ γ4 ≈ Kc + 2 + 1/Ks with Ks = Ks+ and
Kc = Kc+. In the most general case with broken spin ro-
tational symmetry, all these exponents usually differ from
each other. However, from realistic models [3–5], one can
conjecture their values as Ks− = Kc− = 1. In the pres-
ence of external magnetic field, which couples to the s+
field and breaks the spin rotational invariance, marginal in-
teractions change the exponents [13], hence K’s can dif-
fer from their zero field value. This follows from the exact
Bethe-Ansatz solution of the Hubbard model in magnetic
field [16] as well. Based on all this, a simple power count-
ing determines the temperature exponents in the NMR re-
laxation rate as ∼ T γi/2−2.

Having determined the high temperature Luttinger liq-
uid behaviour, we now turn to the evaluation of the re-
sponse function at low temperatures where the gaps are
dominating. In general, at T = 0, all the correlation func-
tions containing a gapped field acquire a factor
∼ exp(−∆

√
τ2 + (x/v)2), which suppresses exponenti-

ally the long time-long distance power-law Luttinger liquid
behaviour [17, 18]. This picture is further corroborated by
the existing exact solutions of the attractive Hubbard model
along the Luther-Emery line (K = 1/2), where strongly
interacting gapped bosons are mapped onto non-interacting
fermions [13,19], i.e. the non-interacting massive Thirring
model [20]. In some cases, this mapping also allows for an
explicit evaluation of certain correlation functions, such as
the finite momentum transverse spin susceptibility [17,20].

At finite temperatures, this simple picture needs to be
modified. From the exact solution of gapped systems such
as the sine-Gordon model [13, 19], it is well established
that different type of excitations contribute to higher fre-
quencies and temperatures [21]. The simplest ones are the

solitons and antisolitons (kinks), which, when attract each
other, form breathers. Their contribution can systemati-
cally be analyzed based on the ”Form Factor Bootstrap
Approach” [22, 23], which uses the integrability of the un-
derlying model (in the case of the Hubbard model, for ex-
ample) to determine the matrix elements of the appropri-
ate operators between the ground state and excited states.
In this case, a simple exponential term cannot account for
their variety.

The explicit determination of these matrix elements is
certainly beyond the scope of the present investigation. In-
stead, we utilize our knowledge about these excitations. At
temperatures comparable to ∆, they start to contribute sig-
nificantly to the response functions. This situation can be
mimicked by retaining our simple exponential factor in the
correlation functions, and adjusting the gap at each tem-
perature to give reasonable contribution. In other words,
this means a ∆(T ) gap function. In spirit, this approach
is identical to the self-consistent harmonic approximation
[24], where one replaces the complicated interaction term
(such as the cosine in the sine-Gordon model) by sim-
pler quadratic ones, and optimizes its coefficient to min-
imize the free energy of the system [25]. Such an approach
for the sine-Gordon model leads to a mass which mono-
tonically decreases with temperature, while above certain
T ∼ ∆(T = 0), the potential generating a gap for a field
is completely washed due to the fluctuations of the field
itself [25]. Above these temperatures, the mass practically
disappears. Such an approach gives very accurate results
for the dependence of the gap on model parameters at zero
temperature [13, 24].

At finite temperatures, contributions to the real time
transverse spin correlator read as

χ⊥(t) ∼ − (T 2aπ/v)γi/2

|sinh(πT t)|γi/2
exp

(
−i

γiπ

4
− i∆(T )|t|

)
,

(7)

which reduces to the standard Luttinger liquid correlator in
the absence of the gap. Here ∆ is the sum of the existing
gaps. At half filling, all sectors are gapped [15], hence ∆
is their sum. Away from half filling, which is presumably
the case in Ref. [11], the spin sectors are fully gapped [5],
and the ∆ is dominated by their contribution. From this,
by Fourier transformation, we can evaluate the frequency
dependent retarded correlation functions, which reads as

χ⊥(ω) ∼
[
exp

(
iKπ

2

)
B

(
−i

E+

2πT
+

K

2
, 1 − K

)
−

− exp
(
− iKπ

2

)
B

(
−i

E−
2πT

+
K

2
, 1 − K

)]
T K−1i,

(8)

where B(x, y) = Γ (x)Γ (y)/Γ (x+y) is Euler’s beta func-
tion, Γ (x) is Euler’s gamma function, E± = ω±∆(T ) and
is shown in Fig. 2. From this, after taking the ω → 0 limit,
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Table 1 The long time exponents of the different contributions to the transverse spin susceptibility (∼ t−γi/2). These also determine
the temperature dependence of the NMR relaxation rate as (T1T )−1 ∼ T γi/2−2.

i qi α, α′, r, r′ exponent (γi)

1 0 α = α′, r = r′
1

Ks+
+ Ks+ +

1

Ks−
+ Ks− ≈ 4

2 2kF α = −α′, r = r′
1

Kc−
+ Kc− +

1

Ks+
+ Ks+ ≈ 4

3 2qF α = α′, r = −r′ Kc+ + Kc− +
1

Ks+
+

1

Ks−
≈ 3.2

4 2(kF ± qF ) α = −α′, r = −r′ Kc+ +
1

Kc−
+

1

Ks+
+ Ks− ≈ 3.2

the NMR relaxation rate follows as

(T1T )−1 = A

(
2aπ

v

)K

T K−2ImF (T ), (9)

where

F (T ) = exp
(

iKπ

2

) Γ (1 − K)Γ
(
− i∆(T )

2πT
+

K

2

)

Γ

(
− i∆(T )

2πT
− K

2
+ 1

) ×

×
[
Ψ

(
− i∆(T )

2πT
− K

2
+ 1

)
− Ψ

(
− i∆(T )

2πT
+

K

2

)]
,

(10)

and K = γi/2, A is a proportionality factor, which is de-
termined by the contribution of the respective fermionic
fields and cannot be obtained by the method used here,
Ψ(x) is the digamma function. At high temperatures, Eq.
(9) exhibits a T K−2 behaviour [26], as is expected from
Luttinger liquids [13, 19]. Based on the possible values
of Luttinger liquid parameters, the contributions with γ3

and γ4 are the most divergent ones at low temperatures
due to the presence of the c+ mode, hence we will con-
centrate on them in the followings. They lead to K =
1 + (Kc + 1/Ks)/2.

In Fig. 3, we fit our Eq. (9) to the experimental data on
the inner wall of metallic double-wall carbon nanotubes as
a function of temperature at magnetic fields H = 3.6 T
and 9.3 T. To increase the strength of the NMR signal, se-
lective enrichment of the inner shells using 13C isotope
was performed, hence mainly the properties of the inner
tube has been probed by the magnetic resonance measure-
ments. Here, we take ∆ = ∆0(1−T/Tc)1/4, which is very
close to that found in the self consistent solution of the soli-
ton energy in the sine-Gordon model [25]. With this, we
can nicely account for the various complicated excitations
of our model. Obviously, we expect a smooth crossover
of ∆ as the temperature increases through Tc to a small
value (∆(T )/T � 1) rather than a sharp drop to zero, but
for computational purposes, we use the above sharp form.
Our results are robust with respect to variations of the gap
function, e.g. the quality of the fitting remains the same
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ω
(a
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Figure 2 (online colour at: www.pss-b.com) The imaginary part
of the local spin susceptibility is plotted as a function of the fre-
quency for various temperatures (T/∆ = 0 (blue), 0.2 (red), 0.8
(black), 5 (magenta) and 20 (green)) and K = 1.7. The pres-
ence of the spin gap is only visible at low temperatures T � ∆.
With increasing temperature, the susceptibility becomes practi-
cally frequency independent.

by changing the exponent, 1/4, within the range 0.1 - 0.7,
since only a finite gap a low temperatures (T � Tc) and
a tiny gap at high temperatures is required (T � Tc). For
the fits, we use Tc ≈ 13 K and ∆0 ≈ 32 K. Theoreti-
cally [25], the critical temperature, at which the cosine po-
tential practically disappears from the sine-Gordon model,
is roughly determined as Tc ≈ ∆(0)/e, in perfect agree-
ment with our fitting. Above Tc, the gap does not make it-
self felt any more. For the Luttinger liquid parameters, we
assume Kc = 0.2, in accordance with Refs. [2] and [5],
and deduce Ks = 1.07 for H = 3.6 T and Ks = 0.87
for H = 9.3 T, which vary with the field but stay close
to unity as expected [13]. For the sake of completeness,
we give the numerical prefactors, which are found to be
A = 1.4 × 104 K/s, while upon reinserting original units,
kB2aπ/�v = 10−4 1/K, and v can be taken roughly as
vF . The latter falls into the same order of magnitude, if
we identify a, as a rough estimate, to be of the order of the
honeycomb lattice constant (∼ 2.46 Å), and vF ∼ 106 m/s,
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Figure 3 (online colour at: www.pss-b.com) The fit of Eq. ((9))
to the experimental data (open circles) of Ref. [11] at H = 3.6 T
(red dashed line) and 9.3 T (blue line). The inset shows the de-
duced Ks exponents as a function of the field for Kc = 0.2 (black
circles) and 0.05 (red squares).

which again certifies our approach. Since the NMR relax-
ation rate has been measured at 290 K for different fields
[11], we can also determine the field dependence of the
Ks exponent, which is shown in the inset of Fig. 3 for two
different, field independent values of Kc. It stays close to
1 and decreases with field. The other exponents Kc± and
Ks− can also vary with the field, but since no exact so-
lutions are available for the Luttinger liquid exponents of
carbon nanotubes unlike for the Hubbard model [16], we
choose the simplest possible approach of assigning all the
field dependence to the s+ field. It is evident from the fig-
ure, that the larger Kc, the larger Ks, hence a suitable in-
crease of the former in magnetic field can result in an incre-
ment of the latter. Given the simplicity of our scheme, the
obtained fits are excellent and the parameters are reason-
able. Finally, we mention the possibility, that upon doping,
the properties of the c+ mode are expected to change (e.g.
Kc+) similarly to the change of the s+ mode in a magnetic
field.

4 Conclusion We have analyzed a recent experi-
mental data [11] of the NMR relaxation rate of CNT. With
the use of bosonization, we find that the low temperature
region is well described by a spin gapped Luther-Emery
liquid. Relaxation is dominated by exponentially activated
behaviour with a gap∼ 30 K. This crosses over to the usual
Luttinger liquid picture at high temperatures compared to
the gap, with characteristic non-integer power-law expo-
nents. Finally, we predict, that the observed spin gap can
significantly be reduced and even completely suppressed
through a quantum phase transition by experimentally ac-
cessible magnetic fields (∼ 25 − 30 T) due to its small
value, similarly [13, 27] to Cu2(C5H12N2)2Cl4.
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